login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347336
Lexicographically earliest sequence of distinct positive integers such that the concatenation of a(n) and a(n+1) added to a(n+2) is a palindrome in base 10.
3
1, 2, 10, 12, 99, 32, 67, 66, 120, 46, 75, 209, 48, 64, 20, 26, 86, 196, 72, 19, 8, 4, 15, 9, 22, 7, 5, 13, 42, 319, 105, 808, 793, 1115, 282, 829, 553, 375, 1080, 493, 308, 1186, 617, 194, 522, 1069, 156, 445, 206, 338, 264, 569, 993, 82, 17, 11, 60, 61, 55, 71, 94, 33, 16, 127, 34, 87
OFFSET
1,2
EXAMPLE
[a(1), a(2)] + a(3) = [1, 2] + 10 = 12 + 10 = 22 (palindrome);
[a(2), a(3)] + a(4) = [2, 10] + 12 = 210 + 12 = 222 (palindrome);
[a(3), a(4)] + a(5) = [10, 12] + 99 = 1012 + 99 = 1111 (palindrome);
[a(4), a(5)] + a(6) = [12, 99] + 32 = 1299 + 32 = 1331 (palindrome); etc.
PROG
(Python)
def ispal(n): s = str(n); return s == s[::-1]
def aupton(terms):
alst, seen = [1, 2], {1, 2}
for n in range(2, terms):
an, partial_sum = 1, int(str(alst[-2]) + str(alst[-1]))
while an in seen or not ispal(partial_sum + an): an += 1
alst.append(an); seen.add(an)
return alst
print(aupton(66)) # Michael S. Branicky, Aug 28 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Carole Dubois, Aug 28 2021
STATUS
approved