login
A299317
Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1
1, 2, 10, 12, 130, 284, 1557, 5838, 24821, 106561, 449606, 1956599, 8438660, 36764273, 160295868, 700439879, 3066084680, 13431404246, 58893058333, 258348784769, 1133779588694, 4977030114598, 21852290559017, 95959325703386
OFFSET
1,2
COMMENTS
Column 4 of A299321.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +15*a(n-2) -12*a(n-3) -117*a(n-4) -82*a(n-5) +220*a(n-6) +455*a(n-7) +187*a(n-8) -278*a(n-9) -592*a(n-10) -695*a(n-11) -353*a(n-12) +604*a(n-13) +404*a(n-14) -92*a(n-15) +874*a(n-16) +845*a(n-17) -523*a(n-18) -728*a(n-19) -234*a(n-20) -26*a(n-21) +90*a(n-22) +42*a(n-23) -39*a(n-24) +15*a(n-25) +40*a(n-26) +4*a(n-27) -8*a(n-28) -2*a(n-29) for n>30
EXAMPLE
Some solutions for n=5
..0..0..0..1. .0..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..1
..0..0..0..0. .1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..0..1. .1..0..0..0
..0..0..0..0. .1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
..1..0..0..1. .1..1..1..1. .0..1..1..1. .0..0..0..0. .0..0..1..1
CROSSREFS
Cf. A299321.
Sequence in context: A156430 A347336 A303356 * A095914 A368159 A189079
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2018
STATUS
approved