login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303358
Bi-unitary deficient-perfect numbers: bi-unitary deficient numbers k for such that 2*k - bsigma(k) is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).
2
1, 2, 8, 10, 12, 32, 112, 128, 136, 144, 152, 184, 512, 1088, 2048, 2144, 2272, 2528, 2736, 3248, 3312, 4592, 7936, 8192, 9800, 11800, 17176, 18632, 18904, 22984, 32768, 32896, 33664, 34688, 49024, 57152, 77248, 85952, 131072, 176400, 212400, 309168, 335376
OFFSET
1,2
COMMENTS
The bi-unitary version of A271816.
Includes all the odd powers of 2 (A004171).
LINKS
EXAMPLE
112 is in the sequence since the sum of its bi-unitary divisors is 1 + 2 + 7 + 8 + 14 + 16 + 56 + 112 = 216 and 2*112 - 216 = 8 is a bi-unitary divisor of 112.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; biunitaryDivisorQ[ div_, n_] := If[Mod[#2, #1]==0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]]&, {#1, #2/#1}]]==1, False]& @@{div, n}; aQ[n_] := Module[{d=2n-bsigma[n]}, If[d<=0, False, biunitaryDivisorQ[d, n]]]; s={}; Do[ If[aQ[n], AppendTo[s, n]], {n, 1, 10000}]; s
PROG
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
isok(n) = my(divs = biudivs(n), sig = vecsum(divs)); (sig < 2*n) && vecsearch(divs, 2*n-sig); \\ Michel Marcus, Apr 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved