login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bi-unitary deficient-perfect numbers: bi-unitary deficient numbers k for such that 2*k - bsigma(k) is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).
2

%I #13 Jan 25 2020 05:56:36

%S 1,2,8,10,12,32,112,128,136,144,152,184,512,1088,2048,2144,2272,2528,

%T 2736,3248,3312,4592,7936,8192,9800,11800,17176,18632,18904,22984,

%U 32768,32896,33664,34688,49024,57152,77248,85952,131072,176400,212400,309168,335376

%N Bi-unitary deficient-perfect numbers: bi-unitary deficient numbers k for such that 2*k - bsigma(k) is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

%C The bi-unitary version of A271816.

%C Includes all the odd powers of 2 (A004171).

%H Amiram Eldar, <a href="/A303358/b303358.txt">Table of n, a(n) for n = 1..171</a>

%e 112 is in the sequence since the sum of its bi-unitary divisors is 1 + 2 + 7 + 8 + 14 + 16 + 56 + 112 = 216 and 2*112 - 216 = 8 is a bi-unitary divisor of 112.

%t f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; biunitaryDivisorQ[ div_, n_] := If[Mod[#2,#1]==0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]]&, {#1, #2/#1}]]==1, False]& @@{div, n}; aQ[n_] := Module[{d=2n-bsigma[n]},If[d<=0, False,biunitaryDivisorQ[d,n]]]; s={}; Do[ If[aQ[n], AppendTo[s,n]], {n, 1, 10000}]; s

%o (PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }

%o gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));

%o biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));

%o isok(n) = my(divs = biudivs(n), sig = vecsum(divs)); (sig < 2*n) && vecsearch(divs, 2*n-sig); \\ _Michel Marcus_, Apr 27 2018

%Y Cf. A004171, A188999, A271816, A292982, A303359.

%K nonn

%O 1,2

%A _Amiram Eldar_ and _Michael De Vlieger_, Apr 22 2018