The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303352 Expansion of Product_{n>=1} 1/(1 + 4*x^n)^(1/2). 3
 1, -2, 4, -18, 66, -230, 832, -3118, 11764, -44374, 168476, -643974, 2470506, -9503946, 36666736, -141824034, 549717490, -2134650662, 8303024092, -32343942934, 126161860886, -492703658930, 1926278860624, -7538530620746, 29529208903872, -115766389203370 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = -4. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ c * (-4)^n / sqrt(Pi*n), where c = 1 / QPochhammer[-1/4]^(1/2) = 0.91806413264267465793225216525758518... - Vaclav Kotesovec, Apr 25 2018 MAPLE seq(coeff(series(mul(1/(1+4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018 MATHEMATICA nmax = 30; CoefficientList[Series[Product[1/(1 + 4*x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *) CROSSREFS Expansion of Product_{n>=1} 1/(1 + b^2*x^n)^(1/b): A081362 (b=1), this sequence (b=2), A303353 (b=3). Cf. A067855, A303350. Sequence in context: A241685 A009679 A007727 * A226011 A174085 A325850 Adjacent sequences:  A303349 A303350 A303351 * A303353 A303354 A303355 KEYWORD sign AUTHOR Seiichi Manyama, Apr 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 04:03 EDT 2021. Contains 346457 sequences. (Running on oeis4.)