login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303349
Expansion of Product_{n>=1} 1/(1 - 9*x^n)^(1/3).
3
1, 3, 21, 138, 1029, 7878, 62751, 508521, 4185885, 34819986, 292135143, 2467528563, 20958538377, 178846047741, 1532203949982, 13171424183184, 113562780734352, 981679181808261, 8505577753517235, 73846557073784937, 642328501788394527
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = 9.
In general, if h > 1 and g.f. = Product_{k>=1} 1/(1 - h^2*x^k)^(1/h), then a(n) ~ h^(2*n) / (Gamma(1/h) * QPochhammer[1/h^2]^(1/h) * n^(1 - 1/h)). - Vaclav Kotesovec, Apr 22 2018
LINKS
FORMULA
a(n) ~ c * 3^(2*n) / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer[1/9]^(1/3)) = 0.390040743840141117482137514... - Vaclav Kotesovec, Apr 22 2018
MAPLE
seq(coeff(series(mul(1/(1-9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 22 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
CROSSREFS
Expansion of Product_{n>=1} 1/(1 - b^2*x^n)^(1/b): A000041 (b=1), A067855 (b=2), this sequence (b=3).
Cf. A303348.
Sequence in context: A079753 A346935 A137969 * A337467 A318041 A054419
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2018
STATUS
approved