login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337467
Expansion of sqrt(2 / ( (1-2*x+49*x^2) * (1-7*x+sqrt(1-2*x+49*x^2)) )).
2
1, 3, -21, -139, 531, 6489, -9723, -292293, -135117, 12514313, 29905809, -501239553, -2310673379, 18245192679, 140574917259, -562805403867, -7557237645741, 11275709877369, 371974318253601, 201852054629631, -16932135947326551, -42530838930147813, 709138646702505999
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 3 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (4*n^2-2*n+1) * a(n-1) - 49 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
MATHEMATICA
a[n_] := Sum[(-3)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-2*x+49*x^2)*(1-7*x+sqrt(1-2*x+49*x^2)))))
(PARI) {a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
Column k=3 of A337464.
Sequence in context: A346935 A137969 A303349 * A318041 A054419 A228115
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 28 2020
STATUS
approved