login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337422 Expansion of sqrt((1-7*x+sqrt(1-2*x+49*x^2)) / (2 * (1-2*x+49*x^2))). 4
1, -1, -21, -7, 739, 1629, -26859, -118329, 922419, 6886397, -27414191, -358533429, 539620621, 17229485987, 8782716411, -769962297447, -1897237412973, 31786556599917, 149610560086113, -1182765435388341, -9268347520205991, 37049669347266471, 505738623506722431 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = -1 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * (4*n^2-6*n+3) * a(n-1) - 49 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020
MATHEMATICA
a[n_] := Sum[(-3)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 27 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt((1-7*x+sqrt(1-2*x+49*x^2))/(2*(1-2*x+49*x^2))))
(PARI) {a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Column k=3 of A337419.
Cf. A245926.
Sequence in context: A040426 A352137 A040425 * A040424 A220132 A146375
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 27 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 08:55 EST 2024. Contains 370272 sequences. (Running on oeis4.)