login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337421
Expansion of sqrt((1-6*x+sqrt(1-4*x+36*x^2)) / (2 * (1-4*x+36*x^2))).
4
1, 0, -14, -48, 198, 2080, 1780, -57120, -270522, 796992, 11771676, 18981600, -314843364, -1841666112, 3400749352, 74960197312, 175979793990, -1853840247168, -13190663057780, 11783856595680, 496784970525748, 1536657455021760, -11053154849810472, -96149956882617792, 4480143410034972
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = 0 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * (8*n^2-12*n+4) * a(n-1) - 36 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020
MATHEMATICA
a[n_] := Sum[(-2)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Aug 27 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt((1-6*x+sqrt(1-4*x+36*x^2))/(2*(1-4*x+36*x^2))))
(PARI) {a(n) = sum(k=0, n, (-2)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Column k=2 of A337419.
Cf. A337390.
Sequence in context: A232826 A205468 A195966 * A345724 A121202 A345691
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 27 2020
STATUS
approved