OFFSET
1,1
COMMENTS
EXAMPLE
The table below shows a(n), for n less than 16, alongside A071395(n) and its prime factors, and the additional prime factors that are needed to produce a(n).
n a(n) A071395(n)
1 120 / (2 * 3) = 20 = 2^2 * 5,
2 420 / (2 * 3) = 70 = 2 * 5 * 7,
3 1320 / (3 * 5) = 88 = 2^3 * 11,
4 1560 / (3 * 5) = 104 = 2^3 * 13,
5 4080 / (3 * 5) = 272 = 2^4 * 17,
6 4560 / (3 * 5) = 304 = 2^4 * 19,
7 5520 / (3 * 5) = 368 = 2^4 * 23,
8 6960 / (3 * 5) = 464 = 2^4 * 29,
9 1650 / (3) = 550 = 2 * 5^2 * 11,
10 3432 / (2 * 3) = 572 = 2^2 * 11 * 13,
11 3900 / (2 * 3) = 650 = 2 * 5^2 * 13,
12 4488 / (2 * 3) = 748 = 2^2 * 11 * 17,
13 7524 / (3 * 3) = 836 = 2^2 * 11 * 19,
14 1890 / (2) = 945 = 3^3 * 5 * 7,
15 17760 / (3 * 5) = 1184 = 2^5 * 37, ...
MATHEMATICA
Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; # k] &, Select[Range[5*10^3], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* Michael De Vlieger, Oct 05 2020 *)
PROG
(PARI)
isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
for(n=1, 2^13, if(isA071395(n), i=0; for(k=1, oo, if(isA337386(k*n), i++; print1(k*n, ", "); break))));
CROSSREFS
Cf. A003973.
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, Sep 07 2020
STATUS
approved