login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337469
a(n) is the least k that is a multiple of A071395(n) (the n-th primitive abundant number) for which A003961(k) is abundant.
1
120, 420, 1320, 1560, 4080, 4560, 5520, 6960, 1650, 3432, 3900, 4488, 7524, 1890, 17760, 19680, 20640, 4290, 22560, 3150, 25440, 5610, 28320, 29280, 12012, 6270, 4410, 6630, 7410, 7590, 23256, 8970, 28152, 9570, 9690, 10230, 6930, 52440, 22620, 59160, 24180, 12210, 8190, 63240, 64320
OFFSET
1,1
COMMENTS
A003961(k) replaces each prime factor of k with the next larger prime. Thus for all terms a(n), A003961(a(n)) is an odd abundant number (some of which are also primitive abundant numbers, starting with n = 1, 2, 9, 10, 12, ...).
FORMULA
a(n) = A071395(n) * A337538(n).
EXAMPLE
The table below shows a(n), for n less than 16, alongside A071395(n) and its prime factors, and the additional prime factors that are needed to produce a(n).
n a(n) A071395(n)
1 120 / (2 * 3) = 20 = 2^2 * 5,
2 420 / (2 * 3) = 70 = 2 * 5 * 7,
3 1320 / (3 * 5) = 88 = 2^3 * 11,
4 1560 / (3 * 5) = 104 = 2^3 * 13,
5 4080 / (3 * 5) = 272 = 2^4 * 17,
6 4560 / (3 * 5) = 304 = 2^4 * 19,
7 5520 / (3 * 5) = 368 = 2^4 * 23,
8 6960 / (3 * 5) = 464 = 2^4 * 29,
9 1650 / (3) = 550 = 2 * 5^2 * 11,
10 3432 / (2 * 3) = 572 = 2^2 * 11 * 13,
11 3900 / (2 * 3) = 650 = 2 * 5^2 * 13,
12 4488 / (2 * 3) = 748 = 2^2 * 11 * 17,
13 7524 / (3 * 3) = 836 = 2^2 * 11 * 19,
14 1890 / (2) = 945 = 3^3 * 5 * 7,
15 17760 / (3 * 5) = 1184 = 2^5 * 37, ...
MATHEMATICA
Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; # k] &, Select[Range[5*10^3], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* Michael De Vlieger, Oct 05 2020 *)
PROG
(PARI)
isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
for(n=1, 2^13, if(isA071395(n), i=0; for(k=1, oo, if(isA337386(k*n), i++; print1(k*n, ", "); break))));
CROSSREFS
See A000203 and A005101 for the definition of abundant.
A003961 and A071395 are used to define the sequence.
Sequences with related definitions: A337386, A337479, A337538.
Cf. A003973.
Sequence in context: A147983 A307933 A235239 * A235232 A304284 A167562
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, Sep 07 2020
STATUS
approved