login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337466
Expansion of sqrt(2 / ( (1-4*x+36*x^2) * (1-6*x+sqrt(1-4*x+36*x^2)) )).
2
1, 4, -6, -120, -266, 2520, 17380, -13104, -599130, -1853544, 12391116, 108252144, 6439356, -3577917200, -14043012984, 65962248352, 730407220998, 602517029400, -22507424996420, -108316306187600, 347406564086868, 5073542740156752, 7904100039294456, -143838603813578400
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 4 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (8*n^2-4*n) * a(n-1) - 36 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
MATHEMATICA
a[n_] := Sum[(-2)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, Apr 29 2021 *)
CoefficientList[Series[Sqrt[2/((1-4x+36x^2)(1-6x+Sqrt[1-4x+36x^2]))], {x, 0, 40}], x] (* Harvey P. Dale, Sep 07 2023 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-4*x+36*x^2)*(1-6*x+sqrt(1-4*x+36*x^2)))))
(PARI) {a(n) = sum(k=0, n, (-2)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
Column k=2 of A337464.
Sequence in context: A367878 A012934 A013165 * A052672 A375697 A377719
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 28 2020
STATUS
approved