|
|
A337466
|
|
Expansion of sqrt(2 / ( (1-4*x+36*x^2) * (1-6*x+sqrt(1-4*x+36*x^2)) )).
|
|
2
|
|
|
1, 4, -6, -120, -266, 2520, 17380, -13104, -599130, -1853544, 12391116, 108252144, 6439356, -3577917200, -14043012984, 65962248352, 730407220998, 602517029400, -22507424996420, -108316306187600, 347406564086868, 5073542740156752, 7904100039294456, -143838603813578400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 4 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (8*n^2-4*n) * a(n-1) - 36 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
|
|
MATHEMATICA
|
a[n_] := Sum[(-2)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, Apr 29 2021 *)
|
|
PROG
|
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-4*x+36*x^2)*(1-6*x+sqrt(1-4*x+36*x^2)))))
(PARI) {a(n) = sum(k=0, n, (-2)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
|
|
CROSSREFS
|
Column k=2 of A337464.
Cf. A337370, A337421.
Sequence in context: A219507 A012934 A013165 * A052672 A137025 A355232
Adjacent sequences: A337463 A337464 A337465 * A337467 A337468 A337469
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Aug 28 2020
|
|
STATUS
|
approved
|
|
|
|