login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009679
Number of partitions of {1, ..., 2n} into coprime pairs.
3
1, 2, 4, 18, 60, 252, 1860, 9552, 59616, 565920, 4051872, 33805440, 465239808, 4294865664, 35413136640, 768372168960, 8757710173440, 79772814777600, 1986906367584000, 22082635812268800, 280886415019776000, 7683780010315046400
OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..30 calculated by Herman Jamke's code.
Carl Pomerance, Coprime permutations, arXiv:2203.03085 [math.NT], 2022.
FORMULA
a(n) = sqrt(A005326(2n)). - T. D. Noe, Feb 10 2007
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether gcd(2i,2j-1) is 1 or >1, respectively. - T. D. Noe, Feb 11 2007
PROG
(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p)
for(n=1, 26, a=matrix(n, n, i, j, gcd(2*i, 2*j-1)==1); print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
CROSSREFS
Cf. A001147 for the number of partitions (pairings) in unrestricted pairs.
Sequence in context: A083694 A179040 A241685 * A007727 A303352 A226011
KEYWORD
nonn
EXTENSIONS
More terms from T. D. Noe, Feb 10 2007
More terms from T. D. Noe, Feb 11 2007
STATUS
approved