login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009679 Number of partitions of {1, ..., 2n} into coprime pairs. 3
1, 2, 4, 18, 60, 252, 1860, 9552, 59616, 565920, 4051872, 33805440, 465239808, 4294865664, 35413136640, 768372168960, 8757710173440, 79772814777600, 1986906367584000, 22082635812268800, 280886415019776000, 7683780010315046400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..30 calculated by Herman Jamke's code.

FORMULA

a(n) = sqrt(A005326(2n)) - T. D. Noe, Feb 10 2007

a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether gcd(2i,2j-1) is 1 or >1, respectively. - T. D. Noe, Feb 11 2007

PROG

(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p)

for(n=1, 26, a=matrix(n, n, i, j, gcd(2*i, 2*j-1)==1); print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007

CROSSREFS

Cf. A001147 for the number of partitions (pairings) in unrestricted pairs.

Sequence in context: A083694 A179040 A241685 * A007727 A303352 A226011

Adjacent sequences:  A009676 A009677 A009678 * A009680 A009681 A009682

KEYWORD

nonn

AUTHOR

David W. Wilson

EXTENSIONS

More terms from T. D. Noe, Feb 10 2007

More terms from T. D. Noe, Feb 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 19:19 EST 2021. Contains 340247 sequences. (Running on oeis4.)