login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005326
Permanent of "coprime?" matrix.
(Formerly M2382)
7
1, 1, 3, 4, 28, 16, 256, 324, 3600, 3600, 129744, 63504, 3521232, 3459600, 60891840, 91240704, 8048712960, 3554067456, 425476094976, 320265446400, 12474417291264, 16417666704384, 2778580249611264, 1142807773593600, 172593628397420544
OFFSET
1,3
COMMENTS
Number of permutations p of (1,2,3,...,n) such that k and p(k) are relatively prime for all k in (1,2,3,...,n). - Benoit Cloitre, Aug 23 2002
Coprime matrix M=[m(i,j)] is a square matrix defined by m(i,j)=1 if gcd(i,j)=1 else 0.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Stephen C. Locke, Table of n, a(n) for n = 1..50 (first 30 terms from Seiichi Manyama)
D. M. Jackson, The combinatorial interpretation of the Jacobi identity from Lie algebra, J. Combin. Theory, A 23 (1977), 233-256.
Carl Pomerance, Coprime permutations, arXiv:2203.03085 [math.NT], 2022.
Ashwin Sah and Mehtaab Sawhney, Enumerating coprime permutations, arXiv:2203.06268 [math.NT], 2022.
FORMULA
a(2n) = A009679(n)^2. - T. D. Noe, Feb 10 2007
MAPLE
Jackson2:=proc(n) local m, i, j, M, p, b, s, x;
if 0=(n mod 2) then;
m := n/2;
M := Matrix(m, m, 0);
for i from 1 to m do for j from 1 to m do;
if 1= igcd(2*i, 2*j-1) then M[i, j]:=1; fi; od; od;
s := LinearAlgebra[Permanent](M);
return s^2;
else;
m := (n + 1)/2;
M := Matrix(m, m, 0);
for i from 1 to m-1 do for j from 1 to m do;
if 1=igcd(2*i, 2*j-1) then M[i, j]:=1; fi; od; od;
for j to m do
M[m, j] := x[j];
end do;
p := LinearAlgebra[Permanent](M);
b := [ ];
for j to m do
b := [op(b), coeff(p, x[j])];
end do;
s := 0;
for i from 1 to m do for j from 1 to m do;
if 1=igcd(2*i-1, 2*j-1) then s:=s+b[i]*b[j]; fi; od; od; fi;
return s;
end;
seq(Jackson2(n), n=1..25); # Stephen C. Locke, Feb 24 2022
MATHEMATICA
perm[m_?MatrixQ] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; a[n_] := perm[ Table[ Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Nov 15 2011 *)
(* or, if version >= 10: *)
a[n_] := Permanent[Table[Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Jul 25 2017 *)
PROG
(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p)
for(n=1, 26, a=matrix(n, n, i, j, gcd(i, j)==1); print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
CROSSREFS
Cf. A009679.
Sequence in context: A042829 A232110 A140896 * A298561 A226049 A354844
KEYWORD
nonn,nice
EXTENSIONS
Corrected by Vladeta Jovovic, Jul 05 2003
More terms from T. D. Noe, Feb 10 2007
a(25) from Alois P. Heinz, Nov 15 2016
STATUS
approved