Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2382 #64 Mar 18 2023 08:49:14
%S 1,1,3,4,28,16,256,324,3600,3600,129744,63504,3521232,3459600,
%T 60891840,91240704,8048712960,3554067456,425476094976,320265446400,
%U 12474417291264,16417666704384,2778580249611264,1142807773593600,172593628397420544
%N Permanent of "coprime?" matrix.
%C Number of permutations p of (1,2,3,...,n) such that k and p(k) are relatively prime for all k in (1,2,3,...,n). - _Benoit Cloitre_, Aug 23 2002
%C Coprime matrix M=[m(i,j)] is a square matrix defined by m(i,j)=1 if gcd(i,j)=1 else 0.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Stephen C. Locke, <a href="/A005326/b005326.txt">Table of n, a(n) for n = 1..50</a> (first 30 terms from Seiichi Manyama)
%H D. M. Jackson, <a href="http://dx.doi.org/10.1016/0097-3165(77)90016-4">The combinatorial interpretation of the Jacobi identity from Lie algebra</a>, J. Combin. Theory, A 23 (1977), 233-256.
%H Carl Pomerance, <a href="https://arxiv.org/abs/2203.03085">Coprime permutations</a>, arXiv:2203.03085 [math.NT], 2022.
%H Ashwin Sah and Mehtaab Sawhney, <a href="https://arxiv.org/abs/2203.06268">Enumerating coprime permutations</a>, arXiv:2203.06268 [math.NT], 2022.
%F a(2n) = A009679(n)^2. - _T. D. Noe_, Feb 10 2007
%p Jackson2:=proc(n) local m,i,j,M,p,b,s,x;
%p if 0=(n mod 2) then;
%p m := n/2;
%p M := Matrix(m, m, 0);
%p for i from 1 to m do for j from 1 to m do;
%p if 1= igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od;
%p s := LinearAlgebra[Permanent](M);
%p return s^2;
%p else;
%p m := (n + 1)/2;
%p M := Matrix(m, m, 0);
%p for i from 1 to m-1 do for j from 1 to m do;
%p if 1=igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od;
%p for j to m do
%p M[m,j] := x[j];
%p end do;
%p p := LinearAlgebra[Permanent](M);
%p b := [ ];
%p for j to m do
%p b := [op(b), coeff(p, x[j])];
%p end do;
%p s := 0;
%p for i from 1 to m do for j from 1 to m do;
%p if 1=igcd(2*i-1,2*j-1) then s:=s+b[i]*b[j]; fi; od; od; fi;
%p return s;
%p end;
%p seq(Jackson2(n), n=1..25); # _Stephen C. Locke_, Feb 24 2022
%t perm[m_?MatrixQ] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; a[n_] := perm[ Table[ Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* _Jean-François Alcover_, Nov 15 2011 *)
%t (* or, if version >= 10: *)
%t a[n_] := Permanent[Table[Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* _Jean-François Alcover_, Jul 25 2017 *)
%o (PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
%o for(n=1,26,a=matrix(n,n,i,j,gcd(i,j)==1); print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
%Y Cf. A009679.
%K nonn,nice
%O 1,3
%A _N. J. A. Sloane_
%E Corrected by _Vladeta Jovovic_, Jul 05 2003
%E More terms from _T. D. Noe_, Feb 10 2007
%E a(25) from _Alois P. Heinz_, Nov 15 2016