login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005324
Column of Motzkin triangle A026300.
(Formerly M3902)
4
1, 5, 20, 70, 230, 726, 2235, 6765, 20240, 60060, 177177, 520455, 1524120, 4453320, 12991230, 37854954, 110218905, 320751445, 933149470, 2714401580, 7895719634, 22969224850, 66829893650, 194486929650, 566141346225, 1648500576021
OFFSET
4,2
COMMENTS
a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(n) = 4. - Clark Kimberling
a(n) = T(n,n-4), where T is the array in A026300.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013.
R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301.
Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
FORMULA
G.f.: z^4*M^5, where M is g.f. of Motzkin numbers (A001006).
a(n) = (-5*I*(-1)^n*(n^4-6*n^3-43*n^2-24*n+36)*3^(1/2)*hypergeom([1/2, n+2],[1],4/3)+15*I*(-1)^n*(n^4+6*n^3+17*n^2+24*n-12)*3^(1/2)*hypergeom([1/2, n+1],[1],4/3))/(6*(n+3)*(n+2)*(n+4)*(n+5)*(n+6)). - Mark van Hoeij, Oct 29 2011
a(n) (n + 6) (n - 4) = n (2 n + 1) a(n - 1) + 3 n (n - 1) a(n - 2). - Simon Plouffe, Feb 09 2012, corrected for offset Aug 17 2022
a(n) = 5*sum(j=ceiling((n-4)/2)..(n+1), binomial(j,2*j-n+4)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, Mar 17 2014
a(n) = A026300(n,n-4). - R. J. Mathar, Aug 17 2022
MAPLE
A005324 := proc(n)
if n <= 6 then
op(n-3, [1, 5, 20]) ;
else
n*(2*n+1)*procname(n-1)+3*n*(n-1)*procname(n-2) ;
%/(n+6)/(n-4) ;
end if;
end proc:
seq(A005324(n), n=4..20) ; # R. J. Mathar, Aug 17 2022
MATHEMATICA
T[n_, k_] := Sum[m = 2j+n-k; Binomial[n, m] (Binomial[m, j] - Binomial[m, j-1]), {j, 0, k/2}];
a[n_] := T[n, n-4];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jul 27 2018 *)
PROG
(Maxima) a(n) := 5*sum(binomial(j, 2*j-n+4)*binomial(n+1, j), j, ceiling((n-4)/2), (n+1))/(n+1); /* Vladimir Kruchinin, Mar 18 2014 */
CROSSREFS
Cf. A026300.
A diagonal of triangle A020474.
Sequence in context: A080930 A169792 A000343 * A304011 A243869 A154638
KEYWORD
nonn,easy
STATUS
approved