login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column of Motzkin triangle A026300.
(Formerly M3902)
4

%I M3902 #61 Aug 17 2022 10:36:28

%S 1,5,20,70,230,726,2235,6765,20240,60060,177177,520455,1524120,

%T 4453320,12991230,37854954,110218905,320751445,933149470,2714401580,

%U 7895719634,22969224850,66829893650,194486929650,566141346225,1648500576021

%N Column of Motzkin triangle A026300.

%C a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(n) = 4. - _Clark Kimberling_

%C a(n) = T(n,n-4), where T is the array in A026300.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. De Castro, A. L. Ramírez and J. L. Ramírez, <a href="http://arxiv.org/abs/1310.2449">Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs</a>, arXiv preprint arXiv:1310.2449 [cs.DM], 2013.

%H R. Donaghey and L. W. Shapiro, <a href="http://dx.doi.org/10.1016/0097-3165(77)90020-6">Motzkin numbers</a>, J. Combin. Theory, Series A, 23 (1977), 291-301.

%H Nickolas Hein and Jia Huang, <a href="https://arxiv.org/abs/1807.04623">Variations of the Catalan numbers from some nonassociative binary operations</a>, arXiv:1807.04623 [math.CO], 2018.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0912.0072">Une méthode pour obtenir la fonction génératrice d'une série</a>, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.

%F G.f.: z^4*M^5, where M is g.f. of Motzkin numbers (A001006).

%F a(n) = (-5*I*(-1)^n*(n^4-6*n^3-43*n^2-24*n+36)*3^(1/2)*hypergeom([1/2, n+2],[1],4/3)+15*I*(-1)^n*(n^4+6*n^3+17*n^2+24*n-12)*3^(1/2)*hypergeom([1/2, n+1],[1],4/3))/(6*(n+3)*(n+2)*(n+4)*(n+5)*(n+6)). - _Mark van Hoeij_, Oct 29 2011

%F a(n) (n + 6) (n - 4) = n (2 n + 1) a(n - 1) + 3 n (n - 1) a(n - 2). - _Simon Plouffe_, Feb 09 2012, corrected for offset Aug 17 2022

%F a(n) = 5*sum(j=ceiling((n-4)/2)..(n+1), binomial(j,2*j-n+4)*binomial(n+1,j))/(n+1). - _Vladimir Kruchinin_, Mar 17 2014

%F a(n) = A026300(n,n-4). - _R. J. Mathar_, Aug 17 2022

%p A005324 := proc(n)

%p if n <= 6 then

%p op(n-3,[1,5,20]) ;

%p else

%p n*(2*n+1)*procname(n-1)+3*n*(n-1)*procname(n-2) ;

%p %/(n+6)/(n-4) ;

%p end if;

%p end proc:

%p seq(A005324(n),n=4..20) ; # _R. J. Mathar_, Aug 17 2022

%t T[n_, k_] := Sum[m = 2j+n-k; Binomial[n, m] (Binomial[m, j] - Binomial[m, j-1]), {j, 0, k/2}];

%t a[n_] := T[n, n-4];

%t Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, Jul 27 2018 *)

%o (Maxima) a(n) := 5*sum(binomial(j,2*j-n+4)*binomial(n+1,j),j,ceiling((n-4)/2),(n+1))/(n+1); /* _Vladimir Kruchinin_, Mar 18 2014 */

%Y Cf. A026300.

%Y A diagonal of triangle A020474.

%K nonn,easy

%O 4,2

%A _N. J. A. Sloane_