This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020474 A Motzkin triangle: a(n,k), n >= 2, 2 <= k <= n, = number of complete, strictly subdiagonal staircase functions. 12
 1, 0, 1, 0, 1, 2, 0, 0, 2, 4, 0, 0, 1, 5, 9, 0, 0, 0, 3, 12, 21, 0, 0, 0, 1, 9, 30, 51, 0, 0, 0, 0, 4, 25, 76, 127, 0, 0, 0, 0, 1, 14, 69, 196, 323, 0, 0, 0, 0, 0, 5, 44, 189, 512, 835, 0, 0, 0, 0, 0, 1, 20, 133, 518, 1353, 2188, 0, 0, 0, 0, 0, 0, 6, 70, 392, 1422, 3610, 5798, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,6 COMMENTS T(n,k) = number of Dyck n-paths that start UU, contain no DUDU and no subpath of the form UUPDD with P a nonempty Dyck path and whose terminal descent has length n-k+2. For example, T(5,4)=2 counts UUDUUDUDDD, UUUDDUUDDD (each ending with exactly n-k+2=3 Ds). - David Callan, Sep 25 2006 LINKS Reinhard Zumkeller, Rows n = 2..120 of triangle, flattened M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675. R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. J. L. Chandon, J. LeMaire and J. Pouget, Denombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80. R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301. Paul Peart and Wen-jin Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Appl. Math. 98 (2000), 255-263. FORMULA a(n,k) = a(n,k-1) + a(n-1,k-1) + a(n-2,k-1), n > k >= 2. EXAMPLE Triangle begins:   1   0, 1   0, 1, 2   0, 0, 2, 4   0, 0, 1, 5,  9   0, 0, 0, 3, 12, 21   0, 0, 0, 1,  9, 30, 51   0, 0, 0, 0,  4, 25, 76, 127   0, 0, 0, 0,  1, 14, 69, 196, 323 MATHEMATICA a[2, 2]=1; a[n_, k_]/; Not[n>2 && 2<=k<=n] := 0; a[n_, k_]/; (n>2 && 2<=k<=n) := a[n, k] = a[n, k-1] + a[n-1, k-1] + a[n-2, k-1]; Table[a[n, k], {n, 2, 10}, {k, 2, n}] (* David Callan, Sep 25 2006 *) PROG (PARI) T(n, k)=if(n==0&&k==0, 1, if(n<=0||k<=0||n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:15 EDT 2018. Contains 316529 sequences. (Running on oeis4.)