OFFSET
0,6
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
LINKS
EXAMPLE
T(3,3) = 4, because 4 permutations of {1,2,3} result in a binary search tree of height 3:
(1,2,3): 1 (1,3,2): 1 (3,1,2): 3 (3,2,1): 3
/ \ / \ / \ / \
o 2 o 3 1 o 2 o
/ \ / \ / \ / \
o 3 2 o o 2 1 o
/ \ / \ / \ / \
o o o o o o o o
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 2, 4;
0, 0, 0, 16, 8;
0, 0, 0, 40, 64, 16;
0, 0, 0, 80, 400, 208, 32;
0, 0, 0, 80, 2240, 2048, 608, 64;
0, 0, 0, 0, 11360, 18816, 8352, 1664, 128;
0, 0, 0, 0, 55040, 168768, 104448, 30016, 4352, 256;
0, 0, 0, 0, 253440, 1508032, 1277568, 479040, 99200, 11008, 512;
...
MAPLE
b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
end:
T:= (n, k)-> b(n, k)-b(n, k-1):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, If[n == 1, If[k > 0, 1, 0], Sum[Binomial[n-1, r-1]*b[r-1, k-1]*b[n-r, k-1], {r, 1, n}] ] ]; t [n_, k_] := b[n, k] - If[k > 0, b[n, k-1], 0]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2011
STATUS
approved