login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195581
Number T(n,k) of permutations of {1,2,...,n} that result in a binary search tree of height k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
20
1, 0, 1, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 16, 8, 0, 0, 0, 40, 64, 16, 0, 0, 0, 80, 400, 208, 32, 0, 0, 0, 80, 2240, 2048, 608, 64, 0, 0, 0, 0, 11360, 18816, 8352, 1664, 128, 0, 0, 0, 0, 55040, 168768, 104448, 30016, 4352, 256, 0, 0, 0, 0, 253440, 1508032, 1277568, 479040, 99200, 11008, 512
OFFSET
0,6
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
FORMULA
Sum_{k=0..n} k * T(n,k) = A316944(n).
Sum_{k=n..2^n-1} k * T(k,n) = A317012(n).
EXAMPLE
T(3,3) = 4, because 4 permutations of {1,2,3} result in a binary search tree of height 3:
(1,2,3): 1 (1,3,2): 1 (3,1,2): 3 (3,2,1): 3
/ \ / \ / \ / \
o 2 o 3 1 o 2 o
/ \ / \ / \ / \
o 3 2 o o 2 1 o
/ \ / \ / \ / \
o o o o o o o o
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 2, 4;
0, 0, 0, 16, 8;
0, 0, 0, 40, 64, 16;
0, 0, 0, 80, 400, 208, 32;
0, 0, 0, 80, 2240, 2048, 608, 64;
0, 0, 0, 0, 11360, 18816, 8352, 1664, 128;
0, 0, 0, 0, 55040, 168768, 104448, 30016, 4352, 256;
0, 0, 0, 0, 253440, 1508032, 1277568, 479040, 99200, 11008, 512;
...
MAPLE
b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
end:
T:= (n, k)-> b(n, k)-b(n, k-1):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, If[n == 1, If[k > 0, 1, 0], Sum[Binomial[n-1, r-1]*b[r-1, k-1]*b[n-r, k-1], {r, 1, n}] ] ]; t [n_, k_] := b[n, k] - If[k > 0, b[n, k-1], 0]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
Row sums give A000142. Column sums give A227822.
Main diagonal gives A011782, lower diagonal gives A076616.
T(n,A000523(n)+1) = A076615(n).
T(2^n-1,n) = A056972(n).
T(2n,n) = A265846(n).
Cf. A195582, A195583, A244108 (the same read by columns), A316944, A317012.
Sequence in context: A134312 A329790 A343649 * A020474 A135589 A244312
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2011
STATUS
approved