login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227822
Number of permutations of [n], [n+1], ... that result in a binary search tree of height n.
4
1, 1, 4, 220, 60092152, 203720181459953921762400, 7088043372247785801830314829178419617696182324188730917543544992
OFFSET
0,3
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
FORMULA
a(n) = Sum_{k=n..2^n-1} A195581(k,n).
EXAMPLE
a(2) = 4, because 4 permutations of {1,2}, {1,2,3}, ... result in a binary search tree of height 2:
(1,2): 1 (2,1): 2 (2,1,3), (2,3,1): 2
/ \ / \ / \
o 2 1 o 1 3
/ \ / \ / \ / \
o o o o o o o o
MAPLE
b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
end:
a:= n-> add(b(k, n)-b(k, n-1), k=n..2^n-1):
seq(a(n), n=0..6);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1],
Sum[Binomial[n - 1, r]*b[r, k - 1]*b[n - 1 - r, k - 1], {r, 0, n - 1}]];
a[n_] := Sum[b[k, n] - b[k, n - 1], {k, n, 2^n - 1}];
a /@ Range[0, 6] (* Jean-François Alcover, Apr 02 2021, after Alois P. Heinz *)
CROSSREFS
Column sums of A195581 and of A244108.
Cf. A317012.
Sequence in context: A222421 A025420 A259460 * A052209 A211610 A364481
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 31 2013
EXTENSIONS
Terms corrected by Alois P. Heinz, Dec 08 2015
STATUS
approved