login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211610
a(n) = Sum_{k=1..n-1} binomial (2*k, k)^n.
2
4, 224, 161312, 1683907808, 256213978094784, 575112148876911852416, 19248204431728945392010740480, 9687459136669902998216039379883774976, 73815961078227084527800998811241905249902260224, 8562177846610881578580018959490439733543225146878872883200
OFFSET
2,1
COMMENTS
2^n divides a(n).
p divides a(p) for prime p of the form p = 6k + 1.
FORMULA
a(n) = Sum_{k=1..n-1} binomial(2*k, k)^n.
a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Mar 03 2014
MATHEMATICA
Table[ Sum[ Binomial[2 k, k]^n, {k, 1, n - 1}], {n, 2, 13}]
CROSSREFS
Sequence in context: A259460 A227822 A052209 * A364481 A042539 A182484
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Apr 17 2012
STATUS
approved