The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211611 a(n) = Sum_{k=1..n-1} C(k)^n, where C(k) is a Catalan number. 3
 1, 9, 642, 540982, 5496576970, 698491214560174, 1147342896257677900291, 25005346993500437111980892595, 7381619397278667883874693730628586499, 30009934325456999669083059570156145437948880627, 1703283943023520710008632777768663744247664926649672215939 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS The C(k) are the Catalan numbers, C(k) = A000108(k) = (2k)!/(k!*(k+1)!) = C(2*k,k)/(k+1). p divides a(p) for prime p of the form p = 6k + 1 (A002476). LINKS Eric Weisstein's World of Mathematics, Catalan Number FORMULA a(n) = Sum_{k=1..n-1} binomial(2*k, k)/(k+1)^n. a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(3*n/2)). - Vaclav Kotesovec, Mar 03 2014 MATHEMATICA Table[ Sum[ (Binomial[2 k, k]/(k + 1))^n, {k, 1, n - 1}], {n, 2, 13}] CROSSREFS Cf. A000108, A002476, A211610, A238717. Sequence in context: A158881 A188394 A157597 * A280904 A210053 A128795 Adjacent sequences: A211608 A211609 A211610 * A211612 A211613 A211614 KEYWORD nonn AUTHOR Alexander Adamchuk, Apr 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:12 EST 2022. Contains 358672 sequences. (Running on oeis4.)