login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211611 Sum_{k=1..n-1} C(k)^n, where C(k) is a Catalan number. 3
1, 9, 642, 540982, 5496576970, 698491214560174, 1147342896257677900291, 25005346993500437111980892595, 7381619397278667883874693730628586499, 30009934325456999669083059570156145437948880627, 1703283943023520710008632777768663744247664926649672215939 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

The C(k) are the Catalan numbers, C(k) = A000108(k) = (2k)!/k!/(k+1)! = C(2*k,k)/(k+1).

p divides a(p) for prime p of the form p = 6k + 1.

LINKS

Table of n, a(n) for n=2..12.

Eric Weisstein's World of Mathematics, Catalan Number

FORMULA

a(n) = Sum[ (Binomial[2 k, k]/(k + 1))^n, {k, 1, n - 1}].

a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(3*n/2)). - Vaclav Kotesovec, Mar 03 2014

MATHEMATICA

Table[ Sum[ (Binomial[2 k, k]/(k + 1))^n, {k, 1, n - 1}], {n, 2, 13}]

CROSSREFS

Cf. A000108, A211610, A238717.

Sequence in context: A158881 A188394 A157597 * A280904 A210053 A128795

Adjacent sequences:  A211608 A211609 A211610 * A211612 A211613 A211614

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Apr 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.