The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211610 a(n) = Sum_{k=1..n-1} binomial (2*k, k)^n. 2

%I #13 Jun 06 2021 09:04:49

%S 4,224,161312,1683907808,256213978094784,575112148876911852416,

%T 19248204431728945392010740480,9687459136669902998216039379883774976,

%U 73815961078227084527800998811241905249902260224,8562177846610881578580018959490439733543225146878872883200

%N a(n) = Sum_{k=1..n-1} binomial (2*k, k)^n.

%C 2^n divides a(n).

%C p divides a(p) for prime p of the form p = 6k + 1.

%F a(n) = Sum_{k=1..n-1} binomial(2*k, k)^n.

%F a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(n/2)). - _Vaclav Kotesovec_, Mar 03 2014

%t Table[ Sum[ Binomial[2 k, k]^n, {k, 1, n - 1}], {n, 2, 13}]

%Y Cf. A211611, A238717.

%K nonn

%O 2,1

%A _Alexander Adamchuk_, Apr 17 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 23:50 EDT 2024. Contains 373391 sequences. (Running on oeis4.)