login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227824
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).
1
1, 1, 2, 7, 24, 86, 330, 1311, 5326, 22070, 92940, 396466, 1709610, 7440200, 32636590, 144146831, 640500188, 2861175670, 12841853052, 57883546774, 261905659756, 1189161029092, 5416356944248, 24741552146026, 113317361529586, 520265301736892, 2394041095608960, 11039387236631796
OFFSET
0,3
COMMENTS
Compare to the trivial identity for the Catalan function C(x) = 1 + x*C(x)^2:
C(x) = Sum_{n>=0} x^n*C(x)^n * Sum_{k=0..n} binomial(n,k)*x^k*(1-x)^(n-k).
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 4.871479127250632..., c = 0.4392903421166... . - Vaclav Kotesovec, Jul 05 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 24*x^4 + 86*x^5 + 330*x^6 + 1311*x^7 +...
where g.f. A(x) satisfies:
A(x) = 1 + x*A(x)*((1-x) + x)
+ x^2*A(x)^2*((1-x)^2 + 2^2*x*(1-x) + x^2)
+ x^3*A(x)^3*((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)
+ x^4*A(x)^4*((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)
+ x^5*A(x)^5*((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k)) +x*O(x^n)));; polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A256938 A150389 A183876 * A270490 A104625 A221454
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 31 2013
STATUS
approved