login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).
1

%I #9 Jul 05 2014 07:21:13

%S 1,1,2,7,24,86,330,1311,5326,22070,92940,396466,1709610,7440200,

%T 32636590,144146831,640500188,2861175670,12841853052,57883546774,

%U 261905659756,1189161029092,5416356944248,24741552146026,113317361529586,520265301736892,2394041095608960,11039387236631796

%N G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).

%C Compare to the trivial identity for the Catalan function C(x) = 1 + x*C(x)^2:

%C C(x) = Sum_{n>=0} x^n*C(x)^n * Sum_{k=0..n} binomial(n,k)*x^k*(1-x)^(n-k).

%H Vaclav Kotesovec, <a href="/A227824/b227824.txt">Table of n, a(n) for n = 0..170</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 4.871479127250632..., c = 0.4392903421166... . - _Vaclav Kotesovec_, Jul 05 2014

%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 24*x^4 + 86*x^5 + 330*x^6 + 1311*x^7 +...

%e where g.f. A(x) satisfies:

%e A(x) = 1 + x*A(x)*((1-x) + x)

%e + x^2*A(x)^2*((1-x)^2 + 2^2*x*(1-x) + x^2)

%e + x^3*A(x)^3*((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)

%e + x^4*A(x)^4*((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)

%e + x^5*A(x)^5*((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5) +...

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*A^m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k)) +x*O(x^n)));;polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 31 2013