login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183876
G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^2 *x^k* A(x)^(2k)].
3
1, 1, 2, 7, 24, 86, 328, 1289, 5180, 21232, 88384, 372582, 1587442, 6825092, 29573380, 129014039, 566183860, 2497841196, 11071594936, 49281430216, 220193658876, 987234942328, 4440142628200, 20027079949202, 90569211556534
OFFSET
0,3
COMMENTS
Compare g.f. to a g.f. B(x) of Catalan numbers (A000108):
B(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k) *x^k* B(x)^(2k)].
LINKS
FORMULA
a(n) = Sum_{k=0..[n/2]} C(n+k, 2k)*C(n+1, n-2k)/(n+1).
G.f. A(x) satisfies:
(1) A(x) = 1/sqrt{ [1-x - x^2*A(x)^2]^2 - 4*x^3*A(x)^2 }.
(2) A(x) = (1/x)*Series_Reversion{ x*(1-x^2)^2/[sqrt((1-x^2)^3 + x^2*(1+x^2)^2) + x*(1+x^2)] }.
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) satisfies: 1-x^2 = (1-x^2)^2*G(x)^2 - 2*x*(1+x^2)*G(x).
(4) A(x) = Sum_{n>=0} x^n*(1 - x*A(x)^2)^(2*n+1) * [Sum_{k>=0} C(n+k,k)^2 *x^k*A(x)^(2k)].
(5) A(x) = Sum_{n>=0} x^(2n)*A(x)^(2n)*[Sum_{k>=0} C(n+k,k)^2*x^k].
(6) A(x) = Sum_{n>=0} x^(2n)*A(x)^(2n)*[Sum_{k=0..n} C(n,k)^2*x^k] /(1-x)^(2n+1).
(7) A(x) = Sum_{n>=0} (2n)!/n!^2 * x^(3n)*A(x)^(2n)/(1-x-x^2*A(x)^2)^(2n+1).
Recurrence: 8*n*(n+1)*(2*n+1)*(5221*n^4 - 34247*n^3 + 79127*n^2 - 74851*n + 23310)*a(n) = 12*n*(26105*n^6 - 171235*n^5 + 398694*n^4 - 384054*n^3 + 116038*n^2 + 18484*n - 9792)*a(n-1) + 6*(31326*n^7 - 252471*n^6 + 759709*n^5 - 1008483*n^4 + 452035*n^3 + 190224*n^2 - 218420*n + 50400)*a(n-2) + (n-2)*(1164283*n^6 - 8801364*n^5 + 23941663*n^4 - 27089928*n^3 + 8937814*n^2 + 3724572*n - 2026080)*a(n-3) - 10*(n-3)*(n-2)*(2*n-7)*(5221*n^4 - 13363*n^3 + 7712*n^2 + 1546*n - 1440)*a(n-4). - Vaclav Kotesovec, Mar 07 2014
a(n) ~ (r^(1/2-n) * sqrt((1 + 7*r^6*s^6 - 2*r^7*s^8 - 3*r^2*(-1+s^2) - 5*r^4*s^2*(-1+s^2) + r*(-3+2*s^2) - r^3*(1 + 4*s^2 + 6*s^4) + r^5*(-9*s^4 + 6*s^6))/(r^2*(1 - r - 5*r^5*s^4 + 3*r^6*s^6 + r^2*(-1+s^2) + r^3*(1+14*s^2) + r^4*(s^2 - 5*s^4))))) / (2*n^(3/2)*sqrt(Pi)), where r = 0.2079338501416944274..., s = 1.815065347470593612... are roots of the system of equations (2*r^2*s*(1 + r - r^2*s^2))/(1 - 2*r - 2*r^3*s^2 + r^4*s^4 + r^2*(1 - 2*s^2))^(3/2) = 1, 1/sqrt(-4*r^3*s^2 + (-1 + r + r^2*s^2)^2) = s. - Vaclav Kotesovec, Mar 07 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 24*x^4 + 86*x^5 + 328*x^6 + ...
where g.f. A(x) satisfies:
(1) A(x) = 1 + x*(1 + x*A(x)^2) + x^2*(1 + 4*x*A(x)^2 + x^2*A(x)^4) + x^3*(1 + 9*x*A(x)^2 + 9*x^2*A(x)^4 + x^3*A(x)^6) + x^4*(1 + 16*x*A(x)^2 + 36*x^2*A(x)^4 + 16*x^3*A(x)^6 + x^4*A(x)^8) + ...;
(2) A(x) = 1/(1-x) + x^2*A(x)^2*(1+x)/(1-x)^3 + x^4*A(x)^4*(1+4*x+x^2)/(1-x)^5 + x^6*A(x)^6*(1+9*x+9*x^2+x^3)/(1-x)^7 + ...
MATHEMATICA
Table[Sum[Binomial[n+k, 2*k]*Binomial[n+1, n-2*k]/(n+1), {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(n+k, 2*k)*binomial(n+1, n-2*k))/(n+1)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(A^2+x*O(x^n))^k))); polcoeff(A, n)}
(PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1-x^2)^2/(sqrt((1-x^2)^3+x^2*(1+x^2)^2+x*O(x^n))+x*(1+x^2))), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/sqrt((1-x-x^2*A^2)^2-4*x^3*A^2+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*(1-x*A^2)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^k*(A^2+x^2*O(x^n))^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*(A^2+x*O(x^n))^m*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*A^(2*m)/(1-x+x*O(x^n))^(2*m+1)*sum(k=0, m, binomial(m, k)^2*x^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3, (2*m)!/m!^2*x^(3*m)*A^(2*m)/(1-x-x^2*A^2+x*O(x^n))^(2*m+1))); polcoeff(A, n)}
CROSSREFS
Cf. A181665.
Sequence in context: A131824 A256938 A150389 * A227824 A270490 A104625
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2011
STATUS
approved