login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183875
Triangle T(n,k) for A(x)^k=sum(n>=k T(n,k)*x^n), where o.g.f. A(x) satisfies A(x)=(a+b*x*A(x))/(c-d*x*A(x)), a=1,b=2,c=1,d=2.
0
1, 4, 1, 24, 8, 1, 176, 64, 12, 1, 1440, 544, 120, 16, 1, 12608, 4864, 1168, 192, 20, 1, 115584, 45184, 11424, 2112, 280, 24, 1, 1095424, 432128, 113088, 22528, 3440, 384, 28, 1, 10646016, 4227584, 1133952, 237824, 39840, 5216, 504, 32, 1, 105522176, 42115072, 11506944, 2505728, 448064, 65280, 7504, 640, 36, 1
OFFSET
1,2
COMMENTS
For o.g.f G(x), G(A(x,a,b,c,d))=g(0)+sum(n>0, sum(k=1..n, T(n,k,a,b,c,d)*g(k))x^n).
T(n,k,1,1,1,1)=A080247(n,k),
T(n,k,2,-1,1,1)=A108891(n,k),
T(n,k,1,-2,1,1)=A125692(n,k),
T(n,k,1,-3,1,1)=A125694(n,k),
T(n,k,-2,1,1,1)=A085403(n,k).
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,k,a,b,c,d):=k/n*sum(i=0..n-k, binomial(n,n-k-i)*a^(k+i)*b^(n-k-i)*binomial(i+n-1,n-1)*c^(-i-n)*d^i), a,b,c,d !=0, n>0.
T(n,k,1,2,1,2):=k/n*2^(n-k)*sum(i=0..n-k, binomial(n,n-k-i)*binomial(i+n-1,n-1)), n>0.
Conjecture: T(n,1) = A156017(n-1). - R. J. Mathar, Nov 14 2011
EXAMPLE
1,
4,1,
24,8,1,
176,64,12,1,
1440,544,120,16,1,
12608,4864,1168,192,20,1,
115584,45184,11424,2112,280,24,1,
1095424,432128,113088,22528,3440,384,28,1,
10646016,4227584,1133952,237824,39840,5216,504,32,1,
105522176,42115072,11506944,2505728,448064,65280,7504,640,36,1
MATHEMATICA
T[n_, k_, a_, b_, c_, d_] := k/n Sum[Binomial[n, n - k - i] a^(k + i) b^(n - k - i) Binomial[i + n - 1, n - 1] c^(-i - n) d^i, {i, 0, n - k}];
T[n_, k_] := T[n, k, 1, 2, 1, 2];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 08 2018, from formula *)
CROSSREFS
Sequence in context: A158978 A128417 A257532 * A136232 A079621 A285061
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 12 2011
STATUS
approved