login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136232
Triangle, read by rows, equal to the matrix 4th power of triangle A136220.
1
1, 4, 1, 24, 8, 1, 198, 76, 12, 1, 2116, 888, 156, 16, 1, 28052, 12542, 2350, 264, 20, 1, 446560, 209506, 41034, 4864, 400, 24, 1, 8325700, 4058806, 821562, 100988, 8710, 564, 28, 1, 178284892, 89706276, 18631332, 2352116, 209440, 14168, 756, 32, 1
OFFSET
0,2
FORMULA
Column k of this triangle = column 1 of U^(k+1) where U = A136228.
EXAMPLE
This triangle P^4 begins:
1,
4, 1;
24, 8, 1;
198, 76, 12, 1;
2116, 888, 156, 16, 1;
28052, 12542, 2350, 264, 20, 1;
446560, 209506, 41034, 4864, 400, 24, 1;
8325700, 4058806, 821562, 100988, 8710, 564, 28, 1;
178284892, 89706276, 18631332, 2352116, 209440, 14168, 756, 32, 1; ...
where column k = column 1 of U^(k+1);
triangle U = A136228 begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1;
12569, 28052, 9884, 1725, 195, 16, 1; ...
where column k of U = column 0 of P^(3k+1) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
PROG
(PARI) {T(n, k)=local(P=Mat(1), U, PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))))); (P^4)[n+1, k+1]}
CROSSREFS
Cf. A136229 (column 0); related tables: A136220 (P), A136228 (U).
Sequence in context: A128417 A257532 A183875 * A079621 A285061 A285066
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 28 2008
STATUS
approved