OFFSET
0,4
FORMULA
EXAMPLE
Triangle U begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1;
12569, 28052, 9884, 1725, 195, 16, 1;
185704, 446560, 162729, 29190, 3393, 288, 19, 1;
3247546, 8325700, 3117660, 571225, 67756, 5880, 399, 22, 1; ...
where column k of U = column 0 of P^(3k+1) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1).
Also, this triangle U can be obtained by the matrix product:
U = P * [P^2 shift right one column]
where P^2 shift right one column begins:
1;
0, 1;
0, 2, 1;
0, 8, 4, 1;
0, 49, 26, 6, 1;
0, 414, 232, 54, 8, 1;
0, 4529, 2657, 629, 92, 10, 1;
0, 61369, 37405, 9003, 1320, 140, 12, 1; ...
PROG
(PARI) {T(n, k)=local(P=Mat(1), U=Mat(1), PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))))); U[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 28 2008
STATUS
approved