The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136230 Triangle V, read by rows, where column k of V^(j+1) = column j of P^(3k+2), for j>=0, k>=0 and where P=A136220. 13
 1, 2, 1, 8, 5, 1, 49, 35, 8, 1, 414, 325, 80, 11, 1, 4529, 3820, 988, 143, 14, 1, 61369, 54800, 14696, 2200, 224, 17, 1, 996815, 932761, 257264, 39468, 4123, 323, 20, 1, 18931547, 18426632, 5198680, 812801, 86506, 6919, 440, 23, 1, 412345688 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Triangle W=P^3=A136231 transforms column k of V into column k+1 of V. This triangle equals the matrix products: V = P^2 * [P shift right one column] and V = U * [U shift down one row] (see examples). EXAMPLE This triangle V begins: 1; 2, 1; 8, 5, 1; 49, 35, 8, 1; 414, 325, 80, 11, 1; 4529, 3820, 988, 143, 14, 1; 61369, 54800, 14696, 2200, 224, 17, 1; 996815, 932761, 257264, 39468, 4123, 323, 20, 1; 18931547, 18426632, 5198680, 812801, 86506, 6919, 440, 23, 1; ... where column k of V = column 0 of P^(3k+2) and triangle P = A136220 begins: 1; 1, 1; 3, 2, 1; 15, 10, 3, 1; 108, 75, 21, 4, 1; 1036, 753, 208, 36, 5, 1; 12569, 9534, 2637, 442, 55, 6, 1; ... where column k of P^2 = column 0 of V^(k+1). Also, this triangle V equals the matrix product: V = P^2 * [P shift right one column] where P^2 = A136225 begins: 1; 2, 1; 8, 4, 1; 49, 26, 6, 1; 414, 232, 54, 8, 1; 4529, 2657, 629, 92, 10, 1; 61369, 37405, 9003, 1320, 140, 12, 1; ... and P shift right one column begins: 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 15, 10, 3, 1; 0, 108, 75, 21, 4, 1; 0, 1036, 753, 208, 36, 5, 1; ... Also, this triangle V equals the matrix product: V = U * [U shift down one row] where triangle U = A136228 begins: 1; 1, 1; 3, 4, 1; 15, 24, 7, 1; 108, 198, 63, 10, 1; 1036, 2116, 714, 120, 13, 1; ... and U shift down one row begins: 1; 1, 1; 1, 1, 1; 3, 4, 1, 1; 15, 24, 7, 1, 1; 108, 198, 63, 10, 1, 1; 1036, 2116, 714, 120, 13, 1, 1; ... PROG (PARI) {T(n, k)=local(P=Mat(1), U=Mat(1), V=Mat(1), PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; V=P^2*PShR; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); V=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, V[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-2))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))))); V[n+1, k+1]} CROSSREFS Cf. A136226 (column 0), A136229 (column 1); related tables: A136220 (P), A136225 (P^2), A136230 (V), A136231 (W=P^3), A136234 (V^2), A136237 (V^3); A136217, A136218. Sequence in context: A178102 A245836 A135520 * A193892 A193907 A298592 Adjacent sequences:  A136227 A136228 A136229 * A136231 A136232 A136233 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jan 28 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 12:46 EDT 2021. Contains 346385 sequences. (Running on oeis4.)