login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136234
Matrix square of triangle V = A136230, read by rows.
2
1, 4, 1, 26, 10, 1, 232, 110, 16, 1, 2657, 1435, 248, 22, 1, 37405, 22135, 4240, 440, 28, 1, 627435, 397820, 81708, 9295, 686, 34, 1, 12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1, 273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340
OFFSET
0,2
FORMULA
Column k of V^2 (this triangle) = column 1 of P^(3k+2), where P = triangle A136220.
EXAMPLE
This triangle, V^2, begins:
1;
4, 1;
26, 10, 1;
232, 110, 16, 1;
2657, 1435, 248, 22, 1;
37405, 22135, 4240, 440, 28, 1;
627435, 397820, 81708, 9295, 686, 34, 1;
12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1;
273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340, 46, 1; ...
where column 0 of V^2 = column 1 of P^2 = triangle A136225.
PROG
(PARI) {T(n, k)=local(P=Mat(1), U=Mat(1), V=Mat(1), PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); U=P*PShR^2; V=P^2*PShR; U=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, U[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-1))[r-c+1, 1])))); V=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, V[r, c], if(c==1, (P^3)[ #P, 1], (P^(3*c-2))[r-c+1, 1])))); P=matrix(#U, #U, r, c, if(r>=c, if(r<#R, P[r, c], (U^c)[r-c+1, 1]))))); (V^2)[n+1, k+1]}
CROSSREFS
Cf. A136227 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136237 (V^3).
Sequence in context: A062328 A378199 A263918 * A196528 A135897 A039816
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved