login
A193907
Mirror of the triangle A193906.
2
1, 2, 1, 8, 5, 2, 23, 14, 8, 3, 63, 39, 23, 13, 5, 167, 103, 63, 37, 21, 8, 440, 272, 167, 102, 60, 34, 13, 1154, 713, 440, 270, 165, 97, 55, 21, 3024, 1869, 1154, 712, 437, 267, 157, 89, 34, 7919, 4894, 3024, 1867, 1152, 707, 432, 254, 144, 55, 20735, 12815
OFFSET
0,2
COMMENTS
A193907 is obtained by reversing the rows of the triangle A193906.
FORMULA
Write w(n,k) for the triangle at A193906. The triangle at A193907 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
2....1
8....5....2
23...14...8....3
63...39...23...13...5
167..103..63...37...21...8
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 2]*x^(n - k), {k, 0, n}];
q[n_, x_] := p[n, x]
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193906 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193907 *)
CROSSREFS
Cf. A193906.
Sequence in context: A135520 A136230 A193892 * A298592 A344163 A199468
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 08 2011
STATUS
approved