login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193908
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+2)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=2x*q(n-1,x)+1 with q(0,x)=1.
4
1, 2, 1, 8, 6, 3, 24, 20, 12, 6, 80, 64, 40, 22, 11, 256, 208, 128, 72, 38, 19, 832, 672, 416, 232, 124, 64, 32, 2688, 2176, 1344, 752, 400, 208, 106, 53, 8704, 7040, 4352, 2432, 1296, 672, 344, 174, 87, 28160, 22784, 14080, 7872, 4192, 2176, 1112, 564
OFFSET
0,2
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...2
1...2...3
1...2...3...5
1...2...3...5...8
First five rows of Q:
1
2...1
4...2..1
8...4...2...1
16..8...4...2...1
EXAMPLE
First six rows:
1
2....1
8....6....3
24...20...12...6
80...64...40...22...11
256..208..128..72...38...19
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 2]*x^(n - k), {k, 0, n}];
q[n_, x_] := 2 x*q[n - 1, x] + 1 ; q[0, x_] := 1;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193908 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193909 *)
CROSSREFS
Sequence in context: A305860 A272983 A195698 * A193904 A154897 A198577
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 09 2011
STATUS
approved