OFFSET
1,2
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..200
FORMULA
Empirical (for n>=2): 3^(n+2) - 2*(n+3)^2. - Vaclav Kotesovec, Nov 27 2012
Conjectures from Colin Barker, Apr 05 2018: (Start)
G.f.: x*(1 + 25*x - 3*x^2 - 33*x^3 + 18*x^4) / ((1 - x)^3*(1 - 3*x)).
a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4) for n>5.
(End)
Conjecture is true. The complement consists of arrangements of the forms
1*, 2*, 01*, 02*, 10*, 12*, 20*, 21*, 001*, 002* and 120*. Robert Israel, Sep 30 2018
EXAMPLE
Some solutions for n=4:
..2....1....1....2....1....2....2....2....0....1....2....1....2....1....0....2
..2....0....2....1....0....2....0....2....2....0....1....1....2....0....1....1
..1....0....2....0....0....1....0....1....1....0....1....2....0....0....1....0
..1....2....2....0....2....1....0....0....2....2....0....1....1....2....1....1
..1....1....1....2....2....1....0....0....0....2....0....2....0....0....2....1
..2....2....1....1....2....0....2....0....0....1....1....0....0....1....0....2
MAPLE
1, seq(3^(n+2)-2*(n+3)^2, n=2..30); # Robert Israel, Sep 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved