login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183879
Number of arrangements of n+2 numbers in 0..4 with each number being the sum mod 5 of two others.
1
1, 25, 821, 8361, 57625, 336617, 1817149, 9433849, 48036737, 242284857, 1216409221, 6093687497, 30495285865, 152537717449, 762827288141, 3814448005209, 19072935346513, 95366219539097, 476834503269013
OFFSET
1,2
COMMENTS
Column 4 of A183884.
LINKS
FORMULA
Empirical (for n>=2): 5^(n+2) - (10*n^2+70*n+124)*2^n + 2*(3*n+8)*(n^2+5*n+8). - Vaclav Kotesovec, Nov 27 2012
Conjectures from Colin Barker, Apr 05 2018: (Start)
G.f.: x*(1 + 10*x + 538*x^2 - 1960*x^3 + 701*x^4 + 4706*x^5 - 7204*x^6 + 4312*x^7 - 960*x^8) / ((1 - x)^4*(1 - 2*x)^3*(1 - 5*x)).
a(n) = 15*a(n-1) - 92*a(n-2) + 306*a(n-3) - 609*a(n-4) + 747*a(n-5) - 554*a(n-6) + 228*a(n-7) - 40*a(n-8) for n>9.
(End)
EXAMPLE
Some solutions for n=2:
..4....3....4....1....2....3....0....1....1....3....3....2....1....4....1....3
..1....1....1....4....1....1....0....3....2....4....2....4....2....3....4....4
..2....2....3....2....3....4....0....2....3....1....1....3....4....1....3....2
..3....4....2....3....4....2....0....4....4....2....4....1....3....2....2....1
CROSSREFS
Cf. A183884.
Sequence in context: A337247 A142998 A218479 * A246761 A122142 A151557
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved