login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156017
Schroeder paths with two rise colors and two level colors.
4
1, 4, 24, 176, 1440, 12608, 115584, 1095424, 10646016, 105522176, 1062623232, 10840977408, 111811534848, 1163909087232, 12212421230592, 129027376349184, 1371482141884416, 14656212306231296, 157369985643577344, 1696975718802522112, 18369603773021552640
OFFSET
0,2
COMMENTS
Hankel transform is 8^C(n+1,2). - Philippe Deléham, Feb 04 2009
a(n-1) is also the number of ways a list of n items can be grouped into nested sublists (e.g., [a b c] to [a b c], [[a] b c], [[a, b] c], [[a [b]] c], and so on). - Ryan Tosh, Nov 10 2021
LINKS
F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq (1.13) a=4, b=2.
Loïc Foissy, Generalized associative algebras, hal-03187479 [math.RA], 2021.
FORMULA
G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);
G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);
a(n) = 2^n*Sum_{k=0..n} C(n+k,2k)*A000108(k) = 2^n*A006318(n).
D-finite with recurrence (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) = Sum_{k=0..n} A090181(n,k)*2^(n+k). - Philippe Deléham, Nov 27 2011
a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = 2*A059435(n) for n >= 1. - Sergey Kirgizov, Feb 13 2017
a(n) = 2^n*hypergeom([-n, n + 1], [2], -1). - Peter Luschny, Nov 25 2020
MAPLE
A156017_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1], j=0..w-1)) od;
convert(a, list) end: A156017_list(20); # Peter Luschny, Feb 29 2016
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
a[n_] := 2^n Hypergeometric2F1[- n, n + 1, 2, -1];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 25 2020 *)
CROSSREFS
Partial sums of A336283.
Sequence in context: A032349 A215709 A103334 * A000309 A112914 A308543
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Feb 01 2009
EXTENSIONS
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
STATUS
approved