OFFSET
0,2
COMMENTS
Hankel transform is 8^C(n+1,2). - Philippe Deléham, Feb 04 2009
a(n-1) is also the number of ways a list of n items can be grouped into nested sublists (e.g., [a b c] to [a b c], [[a] b c], [[a, b] c], [[a [b]] c], and so on). - Ryan Tosh, Nov 10 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq (1.13) a=4, b=2.
Loïc Foissy, Generalized associative algebras, hal-03187479 [math.RA], 2021.
FORMULA
G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);
G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);
D-finite with recurrence (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) = Sum_{k=0..n} A090181(n,k)*2^(n+k). - Philippe Deléham, Nov 27 2011
a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = 2*A059435(n) for n >= 1. - Sergey Kirgizov, Feb 13 2017
a(n) = 2^n*hypergeom([-n, n + 1], [2], -1). - Peter Luschny, Nov 25 2020
MAPLE
A156017_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1], j=0..w-1)) od;
convert(a, list) end: A156017_list(20); # Peter Luschny, Feb 29 2016
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
a[n_] := 2^n Hypergeometric2F1[- n, n + 1, 2, -1];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 25 2020 *)
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Feb 01 2009
EXTENSIONS
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
STATUS
approved