login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Schroeder paths with two rise colors and two level colors.
4

%I #79 Nov 22 2024 08:27:46

%S 1,4,24,176,1440,12608,115584,1095424,10646016,105522176,1062623232,

%T 10840977408,111811534848,1163909087232,12212421230592,

%U 129027376349184,1371482141884416,14656212306231296,157369985643577344,1696975718802522112,18369603773021552640

%N Schroeder paths with two rise colors and two level colors.

%C Hankel transform is 8^C(n+1,2). - _Philippe Deléham_, Feb 04 2009

%C a(n-1) is also the number of ways a list of n items can be grouped into nested sublists (e.g., [a b c] to [a b c], [[a] b c], [[a, b] c], [[a [b]] c], and so on). - _Ryan Tosh_, Nov 10 2021

%H Vincenzo Librandi, <a href="/A156017/b156017.txt">Table of n, a(n) for n = 0..200</a>

%H F. Chapoton, F. Hivert, and J.-C. Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013.

%H Z. Chen and H. Pan, <a href="http://arxiv.org/abs/1608.02448">Identities involving weighted Catalan-Schroder and Motzkin Paths</a>, arXiv:1608.02448 [math.CO], 2016. See eq (1.13) a=4, b=2.

%H Loïc Foissy, <a href="https://hal.archives-ouvertes.fr/hal-03187479">Generalized associative algebras</a>, hal-03187479 [math.RA], 2021.

%F G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);

%F G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);

%F a(n) = 2^n*Sum_{k=0..n} C(n+k,2k)*A000108(k) = 2^n*A006318(n).

%F D-finite with recurrence (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2) = 0. - _R. J. Mathar_, Nov 14 2011

%F a(n) = Sum_{k=0..n} A090181(n,k)*2^(n+k). - _Philippe Deléham_, Nov 27 2011

%F a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 20 2012

%F G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 14 2013

%F a(n) = 2*A059435(n) for n >= 1. - _Sergey Kirgizov_, Feb 13 2017

%F a(n) = 2^n*hypergeom([-n, n + 1], [2], -1). - _Peter Luschny_, Nov 25 2020

%p A156017_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

%p for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1], j=0..w-1)) od;

%p convert(a, list) end: A156017_list(20); # _Peter Luschny_, Feb 29 2016

%t CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%t a[n_] := 2^n Hypergeometric2F1[- n, n + 1, 2, -1];

%t Table[a[n], {n, 0, 20}] (* _Peter Luschny_, Nov 25 2020 *)

%Y Cf. A059435, A090181.

%Y Partial sums of A336283.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Feb 01 2009

%E Spelling/notation corrections by _Charles R Greathouse IV_, Mar 18 2010