login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181665
G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^2 *x^k* A(x)^k].
8
1, 1, 2, 6, 17, 51, 161, 519, 1707, 5711, 19358, 66342, 229505, 800333, 2810370, 9928806, 35266403, 125863071, 451119566, 1623142622, 5860507205, 21227095355, 77108788287, 280847802645, 1025416658863, 3752414144071, 13760368353098
OFFSET
0,3
COMMENTS
Compare g.f. to the g.f. M(x) of Motzkin numbers:
M(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k) * x^k*M(x)^k].
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = x*A(x) + x^2*A(x)^2 + sqrt(1 + 4*x^3*A(x)^3);
(2) A(x) = (1/x)*Series_Reversion[x/(x + x^2 + sqrt(1+4*x^3))];
(3) A(x) = -1 + x*A(x) + x^2*A(x)^2 + 2/C(-x^3*A(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108);
(4) A(x) = Sum_{n>=0} x^n*(1 - x*A(x))^(2*n+1) * [Sum_{k>=0} C(n+k,k)^2 *x^k*A(x)^k];
(5) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k>=0} C(n+k,k)^2*x^k];
(6) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k=0..n} C(n,k)^2*x^k] /(1-x)^(2n+1);
(7) A(x) = Sum_{n>=0} (2n)!/n!^2 * x^(3n)*A(x)^n/(1-x-x^2*A(x))^(2n+1).
a(n) ~ sqrt(3*s^3/(-1 + 3*r + r^3 + 8*r^6*s^3 - 6*r^4*s*(1+2*s) + 3*r^2*(2*s-1))) / (sqrt(Pi)*n^(3/2)*r^(n-3/2)), where r = 0.25811980810324170407..., s = 2.3904081948888478693... are roots of the system of equations r + 2*r^2*s + (6*r^3*s^2)/sqrt(1 + 4*r^3*s^3) = 1, r*s + r^2*s^2 + sqrt(1 + 4*r^3*s^3) = s. - Vaclav Kotesovec, Mar 07 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 51*x^5 + 161*x^6 + ...
where g.f. A(x) satisfies:
(1) A(x) = 1 + x*(1 + x*A(x)) + x^2*(1 + 4*x*A(x) + x^2*A(x)^2) + x^3*(1 + 9*x*A(x) + 9*x^2*A(x)^2 + x^3*A(x)^3) + x^4*(1 + 16*x*A(x) + 36*x^2*A(x)^2 + 16*x^3*A(x)^3 + x^4*A(x)^4) + ...
(2) A(x) = 1/(1-x) + x^2*A(x)*(1+x)/(1-x)^3 + x^4*A(x)^2*(1+4*x+x^2)/(1-x)^5 + x^6*A(x)^3*(1+9*x+9*x^2+x^3)/(1-x)^7 + ...
(3) A(x) = 1/(1-x-x^2*A(x)) + 2*x^3*A(x)/(1-x-x^2*A(x))^3 + 6*x^6*A(x)^2/(1-x-x^2*A(x))^5 + 20*x^9*A(x)^3/(1-x-x^2*A(x))^7 + ...
MATHEMATICA
max = 27; se = 1/x*InverseSeries[ Series[ x/(x + x^2 + Sqrt[1 + 4*x^3]), {x, 0, max}], x]; CoefficientList[se, x] (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI) {a(n)=polcoeff((1/x)*serreverse(x/(x + x^2 + sqrt(1+4*x^3+O(x^(n+2))))), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=x*A+x^2*A^2+sqrt(1 + 4*x^3*A^3+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(A+x*O(x^n))^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*(1-x*A)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^k*(A+x^2*O(x^n))^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*(A+x*O(x^n))^m*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*A^m/(1-x+x*O(x^n))^(2*m+1)*sum(k=0, m, binomial(m, k)^2*x^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3, (2*m)!/m!^2*x^(3*m)*A^m/(1-x-x^2*A+x*O(x^n))^(2*m+1))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Jan 31 2011
STATUS
approved