

A181667


Least integer m > 0 such that none of the first n primes divides any value of the polynomial x^2 + x + m.


2



1, 5, 11, 11, 17, 17, 41, 41, 41, 41, 41, 41, 19421, 19421, 333491, 601037, 601037, 5237651, 9063641, 12899891, 24073871, 24073871, 28537121, 67374467, 67374467, 67374467, 67374467, 146452961, 13236860171, 13236860171, 17959429571, 57391479317, 57391479317
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

All the elements of this sequence with n > 2 are congruent mod 30 to one of the polynomials x^2 + x + 11 or x^2 + x + 17.
The elements of the sequence have been taken from A060392, see below.


LINKS

William P. Orrick, Table of n, a(n) for n = 1..59
M. J. Jacobson, Jr., Master's Thesis, University of Manitoba, 1995. (See Table 6.6, which lists values of 4a(n)1.)


EXAMPLE

x^2 + x + 11 takes the values 11, 13, 17, 23, 31, 41, 53, 67, 83, ... never divisible by any of the primes 2, 3, or 5.


CROSSREFS

a(n) equals min_{k > n} A060392(k).
Sequence in context: A061768 A205673 A245098 * A060846 A113002 A179618
Adjacent sequences: A181664 A181665 A181666 * A181668 A181669 A181670


KEYWORD

nonn


AUTHOR

Esteban Crespi de Valldaura, Feb 04 2011


EXTENSIONS

a(29) corrected and more terms added by William P. Orrick, Mar 17 2017


STATUS

approved



