The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060392 Let f(m) = smallest prime that divides k^2 + k + m for k = 0,1,2,...; sequence gives smallest m >= 0 such that f(m) is the n-th prime. 5
0, 1, 5, 47, 11, 221, 17, 1217, 941, 2747, 8081, 9281, 41, 55661, 19421, 333491, 1262201, 601037, 5237651, 9063641, 12899891, 26149427, 24073871, 28537121, 352031501, 398878547, 160834691, 67374467, 146452961, 24169417397 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Chris Nash (see the Prime Puzzles link) has shown that such an m always exists.
For n>1, least odd number d such that the Legendre symbol (1-4d/prime(k)) = -1 for k = 2,...,n, but not for n+1. - T. D. Noe, Apr 19 2004
REFERENCES
R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
LINKS
G. W. Fung and H. C. Williams, Quadratic polynomials with high density of primes, Mathematics of Computation, Vol. 55, 1990.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
EXAMPLE
k^2 + k takes the values 0, 2, 6, 12, ... for k = 0,1,2,...; the smallest prime divisor of these numbers is 2, so f(0) = 2.
MATHEMATICA
nn=20; a=Table[0, {nn}]; d=-1; While[Length[Select[a, # == 0&]] != 1, d=d+2; i=2; While[JacobiSymbol[1-4d, Prime[i]]==-1, i++ ]; If[i<=nn && a[[i]]==0, a[[i]]=d]]; a (* corrected by Jean-François Alcover, Feb 06 2019 *)
PROG
(PARI) lista(nn) = {va = vector(nn); d = -1; while (#select(x->(x==0), va) != 1, d += 2; i = 2; while(kronecker(1-4*d, prime(i)) == -1, i++); if ((i <= nn) && (va[i] == 0), va[i] = d); ); va; } \\ Michel Marcus, Feb 05 2019
CROSSREFS
Cf. A060380, A060393-A060398. A060394 gives associated values of k.
Sequence in context: A299715 A000872 A307406 * A196160 A136088 A141890
KEYWORD
nice,nonn
AUTHOR
Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 03 2001
EXTENSIONS
Corrected by T. D. Noe, Apr 19 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 11:30 EDT 2024. Contains 372736 sequences. (Running on oeis4.)