login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060380
Let f(m) = smallest prime that divides k^2 + k + m for k = 0,1,2,...; sequence gives smallest m >= 2 such that f(m) is the n-th prime, or -1 if no such m exists.
4
2, 3, 5, 47, 11, 221, 17, 1217, 941, 2747, 8081, 9281, 41, 55661, 19421, 333491, 1262201, 601037, 5237651, 9063641, 12899891, 26149427, 24073871, 28537121, 352031501, 398878547, 160834691, 67374467, 146452961, 24169417397
OFFSET
1,1
COMMENTS
Chris Nash (see the Prime Puzzles link) has shown that such an m always exists.
For n>2, least odd number d such that the Legendre symbol (1-4d/prime(k)) = -1 for k = 2,...,n, but not for n+1. See A060392. - T. D. Noe, Apr 19 2004
REFERENCES
R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
LINKS
G. W. Fung and H. C. Williams, Quadratic polynomials with high density of primes, Mathematics of Computation, Vol. 55, 1990.
EXAMPLE
k^2 + k + 2 takes the values 2, 4, 8, 14, ... for k = 0,1,2,...; the smallest prime divisor of these numbers is 2, so f(2) = 2.
MATHEMATICA
(* This program is not convenient beyond a(24) *) a[1] = 2; a[2] = 3; a[n_] := For[d = 1, True, d = d+2, If[And @@ (# == -1 & /@ Table[JacobiSymbol[1 - 4d, Prime[k]], {k, 2, n}]) && JacobiSymbol[1 - 4d, Prime[n+1]] != -1, Return[d]]]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Oct 14 2013, after T. D. Noe *)
CROSSREFS
Cf. A060392-A060398. A060393 gives associated values of k.
Sequence in context: A281252 A208223 A136371 * A062608 A041791 A322947
KEYWORD
hard,nice,nonn
AUTHOR
Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 03 2001
EXTENSIONS
Corrected by T. D. Noe, Apr 19 2004
STATUS
approved