OFFSET
2,1
COMMENTS
Only a(2) is proved, all the others are conjectured. - Eric Chen, Apr 20 2015 [corrected by A.H.M. Smeets, May 27 2019]
Brown's link reports a(3) as 103 instead of 100. What is the correct value? Dmitry Kamenetsky, Mar 06 2017 [a(3) = 103 is correct as from A077404, A.H.M. Smeets, May 27 2019]
From A.H.M. Smeets, May 27 2019: (Start)
It seems that a(n) < n^2 (i.e., a(n) in base n has two digits) and the least significant digit of a(n) in base n equals n-1, for n > 73.
For n <= 73 and the least significant digit of a(n) in base n is unequal to n-1, then the most significant digit of a(n) in base n equals 1.
From this it seems that, the least significant digit of a(n) in base n equals n-1 or the most significant digit of a(n) in base n equals 1, holds for all n > 1.
For n > 305 it seems that a(n) < n^2 - n - 1.
It seems that a(n) >= n*floor(3*n/4)-1; i.e. for any a(n) which is represented by a two-digit number in base n, the most significant digit is at least floor(3*n/4)-1. (End)
From A.H.M. Smeets, May 30 2019: (Start)
a(n) is a 5-digit number in base n representation for n in {2,3,4,5,7}.
a(n) is a 4-digit number in base n representation for n in {6,8,13}.
a(n) is a 3-digit number in base n representation for n in {9,10,11,12,14,15,16,17,18,21,25,34,35,52,71,72,73}.
For all other bases n, a(n) is a 2-digit number in base-n representation.
If a(n) = n*floor(3*n/4)-1, then n == 0 (mod 4) or n == 3 (mod 4). (End)
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 2..20000 (terms 2..3428 from Karl Hovekamp, with some corrections)
K. S. Brown, Digit Reversal Sums Leading to Palindromes
A.H.M. Smeets, Lists of first 20 Lychrel numbers for bases n <= 1000
A.H.M. Smeets, Scatterplot of log_10(a(n)/n^2) versus n for 73 < n <= 20000
PROG
(Python)
def rev(n, base):
....m = 0
....while n > 0:
........n, m = n//base, m*base+n%base
....return m
n, a, steps = 2, 3, 0
while n <= 20000:
....aa = a
....ra = rev(a, n)
....while aa != ra and steps < 1000:
........aa = aa+ra
........ra, steps = rev(aa, n), steps+1
....if aa == ra:
........a, aa, steps = a+1, a+1, 0
....if steps == 1000:
........print(n, a)
........n, a, steps = n+1, n+2, 0 # A.H.M. Smeets, May 27 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel ten Voorde, Apr 03 2001
EXTENSIONS
More terms from Karl Hovekamp, Jan 03 2007
STATUS
approved