The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095265 A sequence generated from a 4th degree Pascal's Triangle polynomial. 0
 1, 22, 103, 284, 605, 1106, 1827, 2808, 4089, 5710, 7711, 10132, 13013, 16394, 20315, 24816, 29937, 35718, 42199, 49420, 57421, 66242, 75923, 86504, 98025, 110526, 124047, 138628, 154309, 171130, 189131, 208352, 228833, 250614, 273735, 298236 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The characteristic polynomial of M = x^4 - 4x^3 + 6x^2 - 4x + 1. (the recursive multipliers are seen in the polynomial with changed signs: (4), (-6), (4), (-1). LINKS Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n+4) = 4*a(n+3) - 6*a(n+2) + 4*a(n+1) - a(n), (multipliers which are present with changed signs in the characteristic polynomial, x^4 - 4x^3 + 6x^2 - 4x + 1. Given the 4 X 4 matrix derived from an A056939 triangle (fill in with zeros): M = [1 0 0 0 / 1 1 0 0 / 1 4 1 0 / 1 10 10 1], then M^n * [1 0 0 0] = [1 n A000384(n) a(n)] where A000384 is the hexagonal series 1, 6, 15, 28... 3. a(n) = (20/3)n^3 - 10n^2 + (13/3)n. G.f.: x*(21*x^2+18*x+1) / (x-1)^4. - Colin Barker, May 25 2013 EXAMPLE a(13) = 13013 = 4*a(12) - 6*a(11) + 4*a(10) - a(9) = 4*10132 - 6*7711 + 4*5710 - 4089. a(6) = 1106 since M^6 * [1 0 0 0] = [ 1 6 66 1106]. a(6) = 1106 = f(n) = (20/3)(6)^3 -10*(6^2) +(13/3)*6 = 1440 - 360 + 26. MAPLE a:= n-> (20*n^2-30*n+13)*n/3: seq(a(n), n=1..50); # Alois P. Heinz, May 25 2013 MATHEMATICA a[n_] := (MatrixPower[{{1, 0, 0, 0}, {1, 1, 0, 0}, {1, 4, 1, 0}, {1, 10, 10, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ a[n], {n, 36}] (* Robert G. Wilson v, Jun 05 2004 *) CROSSREFS Cf. A056939, A000384. Sequence in context: A044273 A044654 A156795 * A060382 A066450 A231225 Adjacent sequences: A095262 A095263 A095264 * A095266 A095267 A095268 KEYWORD nonn,easy AUTHOR Gary W. Adamson, May 31 2004 EXTENSIONS Edited and corrected by Robert G. Wilson v, Jun 05 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 23:03 EST 2023. Contains 360153 sequences. (Running on oeis4.)