login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060381
a(n) = prime(n)*prime(n+1)*...*prime(2*n-1), where prime(i) is the i-th prime.
3
1, 2, 15, 385, 17017, 1062347, 86822723, 10131543907, 1204461778591, 198229051666003, 35224440615606707, 6295457783127226289, 1331590860773071702483, 310692537866322378582047, 78832548083496383033878901, 21381953681344611984282084241
OFFSET
0,2
COMMENTS
Central terms of triangle A098012. - Reinhard Zumkeller, Oct 02 2014
For n >= 0, a(n+1) is the n-th power of 15 in the monoid defined by A306697. - Peter Munn, Feb 18 2020
LINKS
FORMULA
a(n) = A002110(2*n-1)/A002110(n-1). - Michel Marcus, Mar 16 2019
From Peter Munn, Feb 18 2020: (Start)
a(n) = A019565(A006516(n)).
For n >= 1, a(n) = A098012(n,n), reading A098012 as a square array.
For n > 1, a(n) = A306697(a(n-1), 15) = A059896(A003961^2(a(n-1)), A003961(a(n-1))).
(End)
EXAMPLE
a(1)=2; a(2) = 3*5 = 15; a(3) = 5*7*11 = 385.
MAPLE
seq(mul(ithprime(n+k), k=0..n-1), n=0..15); # Muniru A Asiru, Mar 16 2019
MATHEMATICA
Table[Times@@Prime[Range[n, 2n-1]], {n, 20}] (* Harvey P. Dale, Jul 19 2018 *)
PROG
(Haskell)
a060381 n = a098012 (2 * n - 1) n -- Reinhard Zumkeller, Oct 02 2014
(GAP) P:=Filtered([1..200], IsPrime);;
a:=List([1..15], n->Product([0..n-1], k->P[n+k])); # Muniru A Asiru, Mar 16 2019
(PARI) a(n) = prod(k=n, 2*n-1, prime(k)); \\ Michel Marcus, Mar 16 2019
CROSSREFS
Related to A006516 via A019565.
A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Sequence in context: A254224 A071102 A272899 * A256369 A145328 A139810
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Apr 03 2001
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 16 2019
STATUS
approved