login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098012
Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).
4
2, 3, 6, 5, 15, 30, 7, 35, 105, 210, 11, 77, 385, 1155, 2310, 13, 143, 1001, 5005, 15015, 30030, 17, 221, 2431, 17017, 85085, 255255, 510510, 19, 323, 4199, 46189, 323323, 1616615, 4849845, 9699690, 23, 437, 7429, 96577, 1062347, 7436429, 37182145, 111546435, 223092870
OFFSET
1,1
COMMENTS
Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017
LINKS
FORMULA
n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014
EXAMPLE
2
3 3*2
5 5*3 5*3*2
7 7*5 7*5*3 7*5*3*2
Or, as an infinite square array:
2 3 5 7 ... : row 1 = A000040,
6 15 35 77 ... : row 2 = A006094,
30 105 385 1001 ... : row 3 = A046301,
210 1155 5005 17017 ... : row 4 = A046302,
..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - M. F. Hasler, May 03 2017
MAPLE
T:=(n, k)->mul(ithprime(n-i), i=0..k-1): seq(seq(T(n, k), k=1..n), n=1..9); # Muniru A Asiru, Mar 16 2019
MATHEMATICA
Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)
PROG
(Haskell)
a098012 n k = a098012_tabl !! (n-1) !! (k-1)
a098012_row n = a098012_tabl !! (n-1)
a098012_tabl = map (scanl1 (*)) a104887_tabl
-- Reinhard Zumkeller, Oct 02 2014
(PARI) T098012(n, k)=prod(i=0, k-1, prime(n-i)) \\ "Triangle" variant
A098012(m, n)=prod(i=0, m-1, prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017
(GAP) P:=Filtered([1..200], IsPrime);;
T:=Flat(List([1..9], n->List([1..n], k->Product([0..k-1], i->P[n-i])))); # Muniru A Asiru, Mar 16 2019
CROSSREFS
Cf. A060381 (central terms), A104887, A248147.
Sequence in context: A276942 A255483 A358170 * A066117 A222311 A156833
KEYWORD
easy,nonn,tabl
AUTHOR
Alford Arnold, Sep 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 21 2004
STATUS
approved