OFFSET
1,5
COMMENTS
Arises in Hardy-Littlewood prime k-tuplet conjectural formulas. Also the sequence gives the exact numbers of X42424Y difference-pattern in dRRS[m], where m=modulus=A002110(n). See A049296 (=dRRS[210]=list of first differences of reduced residue system modulo 210=4th primorial). A pattern X42424Y corresponds to a residue-sextuple or it is their difference-quintuple, X,Y > 4. Analogous pattern for primes is in A022008.
a(352) has 1001 decimal digits. - Michael De Vlieger, Mar 06 2017
REFERENCES
See A059862 for references.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..351
C. K. Caldwell, Prime k-tuple Conjecture
Steven R. Finch, Hardy-Littlewood Constants [Broken link]
Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
EXAMPLE
a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
MATHEMATICA
Table[Product[Prime@ i - 6, {i, 4, n}], {n, 19}] (* Michael De Vlieger, Mar 06 2017 *)
PROG
(PARI) a(n) = prod(k=4, n, prime(k) - 6); \\ Michel Marcus, Mar 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 28 2001
STATUS
approved