login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059865
Product_{i=4..n} (prime(i) - 6).
6
1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
OFFSET
1,5
COMMENTS
Arises in Hardy-Littlewood prime k-tuplet conjectural formulas. Also the sequence gives the exact numbers of X42424Y difference-pattern in dRRS[m], where m=modulus=A002110(n). See A049296 (=dRRS[210]=list of first differences of reduced residue system modulo 210=4th primorial). A pattern X42424Y corresponds to a residue-sextuple or it is their difference-quintuple, X,Y > 4. Analogous pattern for primes is in A022008.
a(352) has 1001 decimal digits. - Michael De Vlieger, Mar 06 2017
REFERENCES
See A059862 for references.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
LINKS
C. K. Caldwell, Prime k-tuple Conjecture
Steven R. Finch, Hardy-Littlewood Constants [Broken link]
Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
EXAMPLE
a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
MATHEMATICA
Table[Product[Prime@ i - 6, {i, 4, n}], {n, 19}] (* Michael De Vlieger, Mar 06 2017 *)
PROG
(PARI) a(n) = prod(k=4, n, prime(k) - 6); \\ Michel Marcus, Mar 06 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 28 2001
STATUS
approved