login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204290
E.g.f. A(x) satisfies: Sum_{n>=1} Moebius(n) * A(x)^n/n = x.
1
1, 1, 5, 35, 379, 4969, 81605, 1570715, 35014891, 882837361, 24895264085, 775645354835, 26471069590939, 981882918161209, 39334966906021925, 1692480890859290315, 77845165565219861131, 3811434080897211664321, 197923606218617044173365
OFFSET
1,3
COMMENTS
Related identity: Sum_{n>=1} Moebius(n)/n^s = 1/(Sum_{n>=1} 1/n^s).
FORMULA
E.g.f.: Series_Reversion( Sum_{n>=1} Moebius(n)*x^n/n ).
EXAMPLE
E.g.f.: x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 379*x^5/5! + 4969*x^6/6! +...
where the series reversion of the e.g.f. begins:
x - x^2/2 - x^3/3 - x^5/5 + x^6/6 - x^7/7 + x^10/10 - x^11/11 - x^13/13 + x^14/14 + x^15/15 - x^17/17 - x^19/19 + x^21/21 +...+ Moebius(n)*x^n/n +...
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(sum(m=1, n, moebius(m)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A008683.
Sequence in context: A371028 A125864 A210996 * A059865 A376322 A247596
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2012
STATUS
approved