OFFSET
1,3
COMMENTS
Related identity: Sum_{n>=1} Moebius(n)/n^s = 1/(Sum_{n>=1} 1/n^s).
FORMULA
E.g.f.: Series_Reversion( Sum_{n>=1} Moebius(n)*x^n/n ).
EXAMPLE
E.g.f.: x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 379*x^5/5! + 4969*x^6/6! +...
where the series reversion of the e.g.f. begins:
x - x^2/2 - x^3/3 - x^5/5 + x^6/6 - x^7/7 + x^10/10 - x^11/11 - x^13/13 + x^14/14 + x^15/15 - x^17/17 - x^19/19 + x^21/21 +...+ Moebius(n)*x^n/n +...
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(sum(m=1, n, moebius(m)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2012
STATUS
approved