login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies: Sum_{n>=1} Moebius(n) * A(x)^n/n = x.
1

%I #12 Nov 04 2024 01:43:48

%S 1,1,5,35,379,4969,81605,1570715,35014891,882837361,24895264085,

%T 775645354835,26471069590939,981882918161209,39334966906021925,

%U 1692480890859290315,77845165565219861131,3811434080897211664321,197923606218617044173365

%N E.g.f. A(x) satisfies: Sum_{n>=1} Moebius(n) * A(x)^n/n = x.

%C Related identity: Sum_{n>=1} Moebius(n)/n^s = 1/(Sum_{n>=1} 1/n^s).

%F E.g.f.: Series_Reversion( Sum_{n>=1} Moebius(n)*x^n/n ).

%e E.g.f.: x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 379*x^5/5! + 4969*x^6/6! +...

%e where the series reversion of the e.g.f. begins:

%e x - x^2/2 - x^3/3 - x^5/5 + x^6/6 - x^7/7 + x^10/10 - x^11/11 - x^13/13 + x^14/14 + x^15/15 - x^17/17 - x^19/19 + x^21/21 +...+ Moebius(n)*x^n/n +...

%o (PARI) {a(n)=n!*polcoeff(serreverse(sum(m=1,n,moebius(m)*x^m/m)+x*O(x^n)),n)}

%Y Cf. A008683.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jan 13 2012