Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Apr 03 2023 10:36:10
%S 1,1,1,1,5,35,385,5005,85085,1956955,48923875,1516640125,53082404375,
%T 1964048961875,80526007436875,3784722349533125,200590284525255625,
%U 11032465648889059375,672980404582232621875,43743726297845120421875
%N Product_{i=4..n} (prime(i) - 6).
%C Arises in Hardy-Littlewood prime k-tuplet conjectural formulas. Also the sequence gives the exact numbers of X42424Y difference-pattern in dRRS[m], where m=modulus=A002110(n). See A049296 (=dRRS[210]=list of first differences of reduced residue system modulo 210=4th primorial). A pattern X42424Y corresponds to a residue-sextuple or it is their difference-quintuple, X,Y > 4. Analogous pattern for primes is in A022008.
%C a(352) has 1001 decimal digits. - _Michael De Vlieger_, Mar 06 2017
%D See A059862 for references.
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
%H Michael De Vlieger, <a href="/A059865/b059865.txt">Table of n, a(n) for n = 1..351</a>
%H C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=PrimeKtupleConjecture">Prime k-tuple Conjecture</a>
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants </a> [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010614100031/http://www.mathsoft.com/asolve/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants </a> [From the Wayback machine]
%H G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a> [Cached copy]
%e a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
%e Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
%t Table[Product[Prime@ i - 6, {i, 4, n}], {n, 19}] (* _Michael De Vlieger_, Mar 06 2017 *)
%o (PARI) a(n) = prod(k=4, n, prime(k) - 6); \\ _Michel Marcus_, Mar 06 2017
%Y Cf. A049296, A002110, A005867, A000847, A022008, A051160-A051168, A048298, A059861-A059865.
%K nonn
%O 1,5
%A _Labos Elemer_, Feb 28 2001