login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).
4

%I #22 Mar 16 2019 12:09:46

%S 2,3,6,5,15,30,7,35,105,210,11,77,385,1155,2310,13,143,1001,5005,

%T 15015,30030,17,221,2431,17017,85085,255255,510510,19,323,4199,46189,

%U 323323,1616615,4849845,9699690,23,437,7429,96577,1062347,7436429,37182145,111546435,223092870

%N Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).

%C Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - _M. F. Hasler_, May 03 2017

%H Reinhard Zumkeller, <a href="/A098012/b098012.txt">Rows n = 1..125 of triangle, flattened</a>

%F n-th row = partial products of row n in A104887. - _Reinhard Zumkeller_, Oct 02 2014

%e 2

%e 3 3*2

%e 5 5*3 5*3*2

%e 7 7*5 7*5*3 7*5*3*2

%e Or, as an infinite square array:

%e 2 3 5 7 ... : row 1 = A000040,

%e 6 15 35 77 ... : row 2 = A006094,

%e 30 105 385 1001 ... : row 3 = A046301,

%e 210 1155 5005 17017 ... : row 4 = A046302,

%e ..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - _M. F. Hasler_, May 03 2017

%p T:=(n,k)->mul(ithprime(n-i),i=0..k-1): seq(seq(T(n,k),k=1..n),n=1..9); # _Muniru A Asiru_, Mar 16 2019

%t Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* _Robert G. Wilson v_, Sep 21 2004 *)

%o (Haskell)

%o a098012 n k = a098012_tabl !! (n-1) !! (k-1)

%o a098012_row n = a098012_tabl !! (n-1)

%o a098012_tabl = map (scanl1 (*)) a104887_tabl

%o -- _Reinhard Zumkeller_, Oct 02 2014

%o (PARI) T098012(n,k)=prod(i=0,k-1,prime(n-i)) \\ "Triangle" variant

%o A098012(m,n)=prod(i=0,m-1,prime(n+i)) \\ "Square array" variant. - _M. F. Hasler_, May 03 2017

%o (GAP) P:=Filtered([1..200],IsPrime);;

%o T:=Flat(List([1..9],n->List([1..n],k->Product([0..k-1],i->P[n-i])))); # _Muniru A Asiru_, Mar 16 2019

%Y Cf. A000040, A002110, A006094, A046301, A046302, A046303.

%Y Cf. A060381 (central terms), A104887, A248147.

%K easy,nonn,tabl

%O 1,1

%A _Alford Arnold_, Sep 09 2004

%E More terms from _Robert G. Wilson v_, Sep 21 2004