login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272899
Product of next n prime numbers greater than n.
2
1, 2, 15, 385, 5005, 323323, 7436429, 955049953, 35336848261, 1448810778701, 62298863484143, 14107860812636383, 832363787945546597, 261682369333342226303, 18579448222667298067513, 1356299720254712758928449, 107147677900122307955347471, 46558817449894322874479515781
OFFSET
0,2
COMMENTS
a(n) is of comparable size to n^n. - Charles R Greathouse IV, May 09 2016
a(n) is the product of the terms of the n-th row of A084754. - Michel Marcus, May 09 2016
LINKS
FORMULA
a(n) = A002110(n + A000720(n))/A034386(n), where A002110(n) are the primorials, A000720(n) is the pi(n) prime counting function, and A034386(n) is the primorial of primes less than or equal to n. E.g., a(7) = 955049953 = A002110(11) / A034386(7).
EXAMPLE
a(0) = 1 (the empty product).
a(1) = 2 = 2.
a(2) = 3 * 5 = 15.
a(3) = 5 * 7 * 11 = 385.
a(4) = 5 * 7 * 11 * 13 = 5005.
MAPLE
a:= n-> mul((nextprime@@i)(n), i=1..n):
seq(a(n), n=0..17); # Alois P. Heinz, Jun 24 2024
MATHEMATICA
Table[Times@@Prime[Range[PrimePi[n] + 1, PrimePi[n] + n]], {n, 25}] (* Alonso del Arte, May 09 2016 *)
PROG
(PARI) a(n)=my(v=primes(primepi(n)+n)); prod(i=0, n-1, v[#v-i]) \\ Charles R Greathouse IV, May 09 2016
(Python)
from math import prod
from sympy import prime, primepi
def a(n): r = primepi(n); return prod(prime(i) for i in range(r+1, r+n+1))
print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Feb 15 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Matthew Goers, May 09 2016
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2024
STATUS
approved